Contents

Preface	
Part 1: Spectral representation results related to the differe	ential
expression D = $\frac{1}{2\pi i} \frac{d}{dx}$.	1
1.1 The Hilbert space approach for the differential operator D.	3
1.1.1 Selfadjoint realizations of the operator D in the case of a bo	ounded
interval. The Fourier series.	6
1.1.2 Selfadjoint realization of the operator D in the case of an un	nboun-
ded interval. The Fourier transform.	18
1.1.2.1 Basic Properties of the Fourier Transform.	21
1.1.2.2 Tempered Sobolev spaces.	23
1.1.2.3 The Hartley transform.	52
1.1.3 Functions of D in the case of an unbounded interval.	57
1.1.3.1 Differential operators with constant coefficients.	57
1.1.3.2 Convolutions.	60
1.1.3.2.1 Hilbert transform.	69
1.1.3.2.2 Abel transform.	80
1.1.3.3 The sampling theorem for the Fourier transform.	85
1.1.4 On almost periodic functions.	92
1.1.5 The higher-dimensional Fourier transform as a spectral repres	senta-
tion.	95
1.2 A selfadjoint realization of the differential expression	D+iν,
$ u\in\mathbb{R}$. The Laplace transform.	99
1.3 A selfadjoint realization of the differential expre	ession
$\mathrm{D+i} \nu_1^{+2\mathrm{im} \nu_2}$, $\nu_1^{}$, $\nu_2^{} \in \mathbb{R}$. The Gauss-Weierstrass transform.	103
1.4 A selfadjoint realization of the differential expression m D	+ iν,
$ u \in \mathbb{R}$. The Mellin transform.	106
1.5 A comment on extensions of the theory. Selfadjoint realization	ns for

general differential expression of the form p D q.

111

Part 2:	Spectral results related to some formally selfadjoint different	ial
	expressions of second order.	115
2.1	Some polynomial eigensolutions.	122
2.1.1	Legendre polynomials.	122
2.1.2	Gegenbauer polynomials.	125
2.1.3	Jacobi polynomials.	131
2.1.4	Chebycheff polynomials.	137
2.1.5	Hermite polynomials.	137
2.1.6	Laguerre polynomials.	138
2.2	Spectral results related to the differential expression D^2 . one-sided Fourier sine and Fourier cosine transform.	The
2.3	The Hankel transform as a spectral representation related to	
2.0	differential expression m ⁻¹ $2\pi D$ m $2\pi D + \nu^2 m^{-2}$, $\nu \in \mathbb{R}$.	145
2.4	The Lebedev transform as a spectral representation related to	the
	differential expression m $2\pi D$ m $2\pi D + m^2$.	151
2.5	The (generalized) Mehler transform as a spectral representative related to the differential expression	tio

 $2\pi D (m^2-1) 2\pi D + \mu^2 (m^2-1)^{-1} - \frac{1}{\Lambda}, \mu \in \mathbb{R}.$ 157

2.6 The Jacobi transform as a spectral representation for a selfadjoint realization of $(\alpha, \beta \in \mathbb{R})$

$$(m-1)^{-\alpha}$$
 $(m+1)^{-\beta}$ $2\pi D$ $(m-1)^{\alpha+1}$ $(m+1)^{\beta+1}$ $2\pi D$ $-(\alpha+\beta+1)^2/4$. 164 Excursion: A spectral representation associated with the

2.7 Excursion: A spectral representation associated with the differential expression $(2\pi D)^4$.

Part 3: Appendix: Tools from functional analysis.

References.

181