CONTENTS

1	A 1.	istantal assuran						
1.		istorical survey	1					
		Introduction and motivation	5					
		Bachelier's derivation	5 7					
		Schrödinger's derivation						
		Smoluchowski's derivation	12					
		Tweedie's rationale	14					
		Wald's derivation	15					
	1.6	Huff's derivation	16					
	1.7	A heuristic derivation	20					
	1.8	Martingale methods	23					
	1.9	Halphen's laws	26					
		Further results and exercises	30					
2.	\mathbf{Pro}	perties of the inverse Gaussian distribution						
	2.0	Introduction	33					
	2.1	Natural exponential families	34					
	2.2	The inverse Gaussian law and natural exponential families	39					
	2.3	General exponential families	50					
	2.4	Analogies with the Gaussian law	53					
	2.5	Reproductive exponential families	61					
	2.6	Saddle-point approximation and the inverse Gaussian law	69					
	2.7	Barndorff-Nielsen's p^* formula and the inverse Gaussian law	74					
	2.8	Miscellaneous results	76					
	2.9	The distribution function	81					
	2.10	Notes and additional comments	85					
		Further results and exercises	86					
2								
ა.	3. Characterizations 2.0 Introduction 94							
	3.0	Introduction	~ .					

Contents x

	3.1	Characterizations analogous to the Gaussian law	94		
	3.2	Characterization by constant regression	100		
	3.3	Characterization by random continued fractions	102		
	3.4	Characterization by relation between $\mathbb{E}(X^{-1})$ and			
		$\mathbb{E}(X)$ for exponential family on \mathbb{R}^+	108		
		Further results and exercises	115		
4.		nbinations, extensions, and relatives			
		Introduction	117		
		A class of finite mixtures	117		
	4.2	Multivariate distributions	123		
		Combinations-models generated by IG/RIG laws	132		
	4.4	Kolmogorov–Smirnov statistics and the inverse Gaussian law	135		
	4.5	Miscellaneous results	139		
	4.6	Notes and additional comments	141		
		Further results and exercises	142		
5	Tnz	erse natural exponential families on $\mathbb R$			
υ.		Introduction	146		
		The class \mathcal{M} and inversion in \mathcal{M}	146		
		Inverse pair of natural exponential families on \mathbb{R}	152		
		Convolutions of positive measures	153		
		Mora-Morris classification of cubic exponential families	156		
		Infinite divisibility	158		
		The Tweedie scale	165		
		Lévy processes on the real line	167		
		Right continuous random walks and inversion	170		
	9.0	Further results and exercises	175		
		runther results and exercises	110		
6.	Statistical properties				
	6.0	Introduction	177		
	6.1	Estimation	177		
	6.2	Tests of hypotheses	183		
	6.3	Generalized linear models and the inverse Gaussian law	189		
	6.4	Regression methods	197		

	Contents
6.5 Bayesian inference	200
6.6 Simulation of inverse Gaussian variates	203
Further results and exercises	205
References	212
Author index	244
Subject index	252

xi