Contents Preface | List of Cont | tributors | XV | | |--------------|--|----------------------------|--| | Publications | s of G. S. Watson | xix | | | | AUTOBIOGRAPHICAL ARTICLES
BY G. S. WATSON | xxvii | | | A Boy from | the Bush | xxix | | | "Circling th | e Square" | xlviii | | | | INTRODUCTION | 1 | | | Chapter 1 | The Art of Statistical Science and Geof Watson K. V. Mardia | | | | | 1.1 Time series 1.2 Directional data analysis 1.3 Compositional and shape data analysis 1.4 Technical problems in inference 1.5 Spatial statistics 1.6 Statistics and genetics 1.7 Case studies on issues of public policy | 3
4
4
5
5
6 | | | | PART I TIME SERIES | 7 | | | Chapter 2 | The Asymptotic Distribution of Autocorrelation Coefficients T. W. Anderson | 9 | | | | 2.1 Introduction2.2 Proof of theorem2.3 Proof of corollary2.4 Discussion | 9
14
21
22 | | xiii vi CONTENTS | Chapter 3 | On a Test of Serial Correlation for Regression Models with Lagged Dependent Variables J. Durbin | | | | | |-----------|--|----------|--|--|--| | | 3.1 Introduction 3.2 The h-statistic | 27
28 | | | | | | 3.3 Derivation of significance points of h from those of the variance ratio distribution | 30 | | | | | Chapter 4 | Missed Opportunities E. J. Hannan | 33 | | | | | | 4.1 How is research done? | 33 | | | | | | 4.2 The missed opportunities | 35 | | | | | | 4.3 Conclusion | 44 | | | | | | PART II DIRECTIONAL DATA ANALYSIS | 45 | | | | | Chapter 5 | Bootstrap Methods for Directional Data N. I. Fisher and P. Hall | 47 | | | | | | 5.1 Introduction | 47 | | | | | | 5.2 Some bootstrap confidence regions for directional data | 48 | | | | | | 5.3 Bootstrap comparison of mean direction and the fold test | 53 | | | | | | problem in palaeomagnetism 5.4 Concluding remarks | 62 | | | | | Chapter 6 | Optimal Robust Estimators for the Concentration | | | | | | _ | Parameter of a von Mises-Fisher Distribution E. Ronchetti | 65 | | | | | | 6.1 Introduction | 65 | | | | | | 6.2 Robustness concepts | 66 | | | | | | 6.3 Optimal robust estimators for the concentration parameter6.4 General M-estimators | 69
72 | | | | | Chapter 7 | On Watson's ANOVA for Directions M. A. Stephens | 75 | | | | | | 7.1 Introduction | 75 | | | | | | 7.2 The ANOVA technique | 76 | | | | | | 7.3 Exact and approximate tests | 77 | | | | | | 7.4 A multiway layout | 79
81 | | | | | | 7.5 Two dimensions 7.6 Higher dimensions | 82 | | | | | | 7.0 Aligner dimensions 7.7 Conditional tests and ANOVA | 83 | | | | | CONTENTS | vii | |----------|-----| |----------|-----| | PART III | COMPOSITIONAL AND SHAPE DATA ANALYSIS | 87 | |------------|---|------------| | Chapter 8 | The Triangle in Statistics J. Aitchison | 89 | | | J. Auchison | | | | 8.1 Prologue | 89 | | | 8.2 The triangle as sample space | 90
99 | | | 8.3 The triangle as parameter space | 99 | | | 8.4 The triangle as design space8.5 The triangle as a teaching aid | 100 | | | 8.6 Postlude: the triangle and the sphere | 102 | | Chapter 9 | Spherical Triangles Revisited D. G. Kendall | 105 | | | 9.1 Introduction | 105 | | | 9.2 The problem | 107 | | | 9.3 The shape space is a 3-sphere | 108 | | | 9.4 Discussion | 110 | | Chapter 10 | New Directions in Shape Analysis J. T. Kent | 115 | | | 10.1 Introduction | 115 | | | 10.2 Combining data | 116 | | | 10.3 Embeddings | 122 | | | 10.4 Weighting functions | 126 | | | PART IV TECHNICAL PROBLEMS IN INFERENCE | 129 | | | INFERENCE | ~ | | Chapter 11 | Inversion and Index Notation | 131 | | | O. E. Barndorff-Nielsen and P. Blæsild | | | | 11.1 Introduction | 131 | | | 11.2 Preliminaries on notation | 132 | | | 11.3 Lower triangular matrices | 133 | | | 11.4 The multiderivatives of an inverse mapping | 136
142 | | | 11.5 Inversion of asymptotic series | 144 | | | 11.6 The case of 0-1 lower triangular matrices 11.7 Derivative strings | 148 | | Chapter 12 | 2 Tests of Fit for Logistic Models | 153 | | | R. J. Beran and P. W. Millar | | | | 12.1 Introduction | 153 | | | 12.1 Introduction 12.2 The logistic model | 155 | viii CONTENTS | | 12.4
12.5
12.6
12.7 | Asymptotics for the test statistic (12.2.6) A computable test statistic Calculation of critical values Asymptotics for the approximating test statistics (12.4.3) Proofs Appendix | 157
158
161
162
163
167 | |------------|------------------------------|---|--| | Chapter 13 | A Cla | ass of Nearly Exact Saddlepoint Approximations Daniels | 173 | | | | Introduction | 173 | | | 13.1
13.2 | The birth process | 174 | | | 13.3 | A nearly exact distribution | 175
176 | | | 134 | Further examples | 178 | | | | A case where the distribution function is unknown
Comments | 180 | | ~ 1 | 4 17: | rids: Simple Nearly Symmetrizing Reexpressions for | | | Chapter 14 | Exp | onentially Distributed Quantities W. Tukey | 183 | | | | | 183 | | | 14.1
14.2 | Introduction Some candidates | 184 | | | | Discussion | 184 | | | 14.4 | Conclusion | 187 | | | PA | RT V SPATIAL STATISTICS | 189 | | Chapter 1 | 5 A C | Comparison of Variogram Estimation with Covariogram imation | 191 | | | No | el Cressie and Martin O. Grondona | | | | | | 191 | | | 15.1
15.2 | | 193 | | | 15.2 | Bias of variogram and covariogram estimators | 194 | | | 15.4 | Other points of comparison | 202
204 | | | 15.5 | Exact distribution theory for the variogram estimator | 204 | | | 15.6 | 6 Conclusions and discussion | 200 | | Chapter 1 | 16 Ho | w to Charge for Boundaries in a Pixel Image
Jennison and B. W. Silverman | 209 | | | <i>C.</i> . | | 209 | | | 16.1 | | 212 | | | 16.2 | 2 Square lattices | 215 | | | 16.3 | 3 Irregular and uneven pixel arrays
4 Regular arrays revisited | 225 | | | 10.4 | 4 Regulai altays levisited | | | CONTENTS | ix | |----------|----| | CONTENTS | i. | | | PAR | RT VI | STATISTICS | S AND | GENETICS | 231 | |------------|--------------|-------------|---------------------------------------|--------------|-------------------|------------| | Chapter 17 | On the | | of Mathematica | ıl Statistic | es in Population | 233 | | | W. J. | Ewens | | | | | | | 17.1 | Introduc | tion | | | 233 | | | | | nary theory | | | 235 | | | | Fitness | • | | | 242 | | | 17.4 | Mathema | atical population; | genetics | | 243 | | | | Tactical o | | | | 250 | | | 17.6
17.7 | Human g | ctive analyses | | | 253
254 | | | 17.7 | riuman g | genetics | | | 234 | | Chapter 18 | Stock | nastic Co | omparisons betw | veen Mea | ns and Medians | | | | for i.i | i.d. Rand | lom Variables | | | 261 | | | Samu | el Karlin | ı | | | | | | 18.1 | Introduc | tion | | | 261 | | | | | Theorems 18.1 ar | nd 18.2 | | 265 | | | 18.3 | | | | e mean and mediar | 1 | | | | | les from the univa | riate norma | al density | 269 | | | | | s of sex ratios
en problems | | | 272
274 | | | PAR | T VII | | | N ISSUES O | | | | | | PUBLIC PO | DLICY | | 275 | | Chapter 19 | Para | meter Es | stimation in the | Operatio | nal Modelling o | f | | • | | AIDS | | - | _ | 277 | | | , | ıan T. J. | Bailey | | | | | | 10.1 | T., 4., J., | 4: | | | 278 | | | 19.1
19.2 | Introduct | uon
available | | | 279 | | | 19.3 | | lems of heterogen | eity and co | mplexity | 282 | | | | | on period models | • | • | 283 | | | | | e of high-risk subg | group | | 284 | | | | | of demographic i | | | 285 | | | | | d compartmental | | | 286 | | | 19.8 | | er estimation and | | | 288
291 | | | | | of San Francisco
y and conclusions | data on mi | v and Aids | 295 | | | 17.10 | Summary | y and conclusions | | | 2/0 | | Chapter 20 | | | timation of Clir | matic Tre | nds | 299 | | | Peter | Bloomfi | eld | | | | | | 20.1 | Y 4 | . • | | | 200 | | | | Introduct | tion | | | 299 | x CONTENTS | | 20.3 Statistical models 20.4 Temperature change 20.5 Consistency of predictions and observations 20.6 Conclusions | 301
307
307
309 | |--------------|--|--------------------------| | Index | | 313 | | Photograph 1 | Geoffrey Stuart Watson (taken at an exhibition of his paintings on 5 March 1989) | ii | | Photograph | Geoffrey Stuart Watson (1975) in his Fine Hall Office
in Princeton | xix | | Photograph | 3 Geoffrey Stuart Watson (1947) at the University of Melbourne | xxviii | | Photograph | 6 WELL Barrantrables N. 7 (1957)" | xlviii | | Photograph | :-1:-to in Directional Statistics at a | 2 |