Contents

Preface	vii
CHAPTER 1	1
Introduction to the Power-Divergence Statistic	1
1.1 A Unified Approach to Model Testing	1
1.2 The Power-Divergence Statistic	2
1.3 Outline of the Chapters	3
CHAPTER 2	_
Defining and Testing Models: Concepts and Examples	5
2.1 Modeling Discrete Multivariate Data	5
2.2 Testing the Fit of a Model	9
2.3 An Example: Time Passage and Memory Recall	12
2.4 Applying the Power-Divergence Statistic	14
2.5 Power-Divergence Measures in Visual Perception	17
CHAPTER 3	40
Modeling Cross-Classified Categorical Data	19
3.1 Association Models and Contingency Tables	19
3.2 Two-Dimensional Tables: Independence and Homogeneity	20
3.3 Loglinear Models for Two and Three Dimensions	25
3.4 Parameter Estimation Methods: Minimum Distance Estimation	28
3.5 Model Generation: A Characterization of the Loglinear, Linear,	
and Other Models through Minimum Distance Estimation	34
3.6 Model Selection and Testing Strategy for Loglinear Models	40

Contents x

CHAPTER 4	44
Testing the Models: Large-Sample Results	44
4.1 Significance Levels under the Classical (Fixed-Cells) Assumptions	45
4.2 Efficiency under the Classical (Fixed-Cells) Assumptions	53 57
4.2 Girmis and Layele and Efficiency under Sparseness Assumptions	62
4.4 A Summary Comparison of the Power-Divergence Family Members 4.5 Which Test Statistic?	63
CHAPTER 5 Improving the Accuracy of Tests with Small Sample Size	64
5.1 Improved Accuracy through More Accurate Moments	64
5.2 A Second-Order Correction Term Applied Directly to the Asymptotic	68
Distribution 5.3 Four Approximations to the Exact Significance Level: How Do	
They Compare?	69
5.4 Exact Power Comparisons	76
5.5 Which Test Statistic?	79
CHAPTER 6 Comparing the Sensitivity of the Test Statistics	81
Comparing the Sensitivity of the Test Statistics	81
6.1 Relative Deviations between Observed and Expected Cell Frequencies	83
6.1 Relative Boylands6.2 Minimum Magnitude of the Power-Divergence Test Statistic6.3 Further Insights into the Accuracy of Large-Sample Approximations	86
6.4 Three Illustrations	88
6.5 Transforming for Closer Asymptotic Approximations in Contingency	
Tables with Some Small Expected Cell Frequencies	92
6.6 A Geometric Interpretation of the Power-Divergence Statistic	94 96
6.7 Which Test Statistic?	90
CHAPTER 7 Links with Other Test Statistics and Measures of Divergence	98
	99
7.1 Test Statistics Based on Quantiles and Spacings	103
7.2 A Continuous Analogue to the Discrete Test Statistic7.3 Comparisons of Discrete and Continuous Test Statistics	105
7.4 Diversity and Divergence Measures from Information Theory	106
CHAPTER 8	114
Future Directions	114
8.1 Hypothesis Testing and Parameter Estimation under Sparseness Assumptions	114
8.2 The Parameter λ as a Transformation	118
8.3 A Generalization of Akaike's Information Criterion	124
8.4 The Power-Divergence Statistic as a Measure of Loss and a Criterion	128
for General Parameter Estimation	132
8.5 Generalizing the Multinomial Distribution	122

Contents xi

Historical Perspective: Pearson's X^2 and the Loglikelihood Ratio Statistic G^2	133
1. Small-Sample Comparisons of X^2 and G^2 under the Classical	
(Fixed-Cells) Assumptions	134
2. Comparing X^2 and G^2 under Sparseness Assumptions	140
3. Efficiency Comparisons	144
4. Modified Assumptions and Their Impact	150
Appendix: Proofs of Important Results	154
A1. Some Results on Rao Second-Order Efficiency and Hodges-Lehmann	
Deficiency (Section 3.4)	154
A2. Characterization of the Generalized Minimum Power-Divergence	
Estimate (Section 3.5)	159
A3. Characterization of the Lancaster-Additive Model (Section 3.5)	160
A4. Proof of Results (i), (ii), and (iii) (Section 4.1)	161
A5 Statement of Birch's Regularity Conditions and Proof that the	
Minimum Power-Divergence Estimator Is BAN (Section 4.1)	163
A6 Proof of Results (i*), (ii*), and (iii*) (Section 4.1)	167
A7. The Power-Divergence Generalization of the Chernoff-Lehmann	
Statistic: An Outline (Section 4.1)	170
A8 Derivation of the Asymptotic Noncentral Chi-Squared Distribution	
for the Power-Divergence Statistic under Local Alternative Models	
(Section 4.2)	171
A9 Derivation of the Mean and Variance of the Power-Divergence	
Statistic for $\lambda > -1$ under a Nonlocal Alternative Model	
(Section 4.2)	172
A10. Proof of the Asymptotic Normality of the Power-Divergence Statistic	
under Sparseness Assumptions (Section 4.3)	174
A11 Derivation of the First Three Moments (to Order 1/n) of the	
Power-Divergence Statistic for $\lambda > -1$ under the Classical	
(Fixed Calls) Assumptions (Section 5.1)	175
A12 Derivation of the Second-Order Terms for the Distribution Function	
of the Power-Divergence Statistic under the Classical (Fixed-Cells)	
Assumptions (Section 5.2)	181
A13. Derivation of the Minimum Asymptotic Value of the Power-	400
Divergence Statistic (Section 6.2)	183
A14. Limiting Form of the Power-Divergence Statistic as the Parameter	102
$\lambda \to \pm \infty$ (Section 6.2)	183
Bibliography	185
Author Index	199
Subject Index	205
Subject Hidex	