Contents

Notation	xiii
Chapter I \cdot Box splines defined	
The analytic definition A geometric description The inductive definition A univariate example A bivariate example	1 2 4 4 5
Conventions Basic properties Fourier transform Symmetries Local structure and truncated power	7 9 9 10 11
Differentiation Proof of basic properties Recurrence relations Example: four ways to construct a box spline The support of the box spline	13 15 17 18 23
Zonotopes Notes	27 30

Preface

x Contents

Convolutions Partition of unity The box spline shifts which do not vanish at a given point Differentiation Linear independence	34 35 37 38 38
Example: the three-direction mesh Example: the ZP element The dimension of $D(\Xi)$ Tensor products Three-direction mesh	41 42 46 46
The structure of $\Delta(\Xi)$ Example: four-direction mesh with multiplicities The polynomials contained in S A basis for $D(\Xi)$ Examples	48 52 52 53 55
D - and σ -invariance Notes	57 58
Chapter III · Quasi-interpolants & approximation power	r
An upper bound Quasi-interpolants Convolutions on polynomial spaces The semi-discrete convolution is a convolution on its range Marsden identity	62 63 65 66 67
Quasi-interpolant summary Appell sequence Example: the ZP element Choice of the quasi-interpolant functional Minimality	68 68 69 72 73
Quasi-interpolants via Neumann series Quasi-interpolants via Fourier transform Example: the ZP element Notes	74 76 77 78

Contents xi

Chapter IV $\,\cdot\,\,$ Cardinal interpolation & difference equations

Correct and singular cardinal interpolation	79
Example: univariate and bivariate quadratic box splines	80
Symbol and fundamental solution	81
Example: three-direction mesh	84
Correctness and linear independence	87
Example: centered hat function	88
Singular cardinal interpolation	92
Example: the centered ZP element	95
Bivariate four-direction box splines with even multiplicities	95
The approximation order of cardinal interpolation	99
Notes	101
Chapter V · Approximation by cardinal splines & wavele	ets
Fundamental domains	105
Properties of Ω_{Ξ}	108
Example: two-direction mesh	111
Example: three-direction mesh	114
Convergence of cardinal splines	117
Relation to cardinal series	120
Example: three-direction mesh	122
Wavelet decompositions	124
Wavelets in dimensions ≤ 3	132
Notes	135
hapter VI \cdot Discrete box splines & linear diophantine equa	ations
maple: 11 District Son spinios & most dispitations equi	

\mathbf{C} S

Definition	137
Geometric description	138
Support	138
Convolution	139
Construction	139
Fourier transform	140
Differentiation	141
Annihilation	142
Linear independence	142
Linear diophantine equations	144
Linear independence (continued)	148
On extending to an element of $\Delta(\Xi)$	151

xii Contents

Discrete truncated power	154
The local structure of the discrete box spline	155
Local linear independence	156
Notes	157
Chapter VII · Subdivision algorithms	
Masks	160
Geometric derivation of the refinement equation	161
Factorization of the mask	162
Example: two-direction mesh	164
Subdivision as discrete smoothing	164
Linear convergence of subdivision	165
Example: linear convergence is best possible	168
Quadratic convergence of subdivision	169
Example: the ZP element	172
Notes	173
References	175
Index	193