Contents | Notation | xiii | |---|----------------------------| | Chapter I \cdot Box splines defined | | | The analytic definition A geometric description The inductive definition A univariate example A bivariate example | 1
2
4
4
5 | | Conventions Basic properties Fourier transform Symmetries Local structure and truncated power | 7
9
9
10
11 | | Differentiation Proof of basic properties Recurrence relations Example: four ways to construct a box spline The support of the box spline | 13
15
17
18
23 | | Zonotopes
Notes | 27
30 | Preface x Contents | Convolutions Partition of unity The box spline shifts which do not vanish at a given point Differentiation Linear independence | 34
35
37
38
38 | |--|----------------------------| | Example: the three-direction mesh Example: the ZP element The dimension of $D(\Xi)$ Tensor products Three-direction mesh | 41
42
46
46 | | The structure of $\Delta(\Xi)$
Example: four-direction mesh with multiplicities
The polynomials contained in S
A basis for $D(\Xi)$
Examples | 48
52
52
53
55 | | D - and σ -invariance
Notes | 57
58 | | Chapter III · Quasi-interpolants & approximation power | r | | An upper bound Quasi-interpolants Convolutions on polynomial spaces The semi-discrete convolution is a convolution on its range Marsden identity | 62
63
65
66
67 | | Quasi-interpolant summary Appell sequence Example: the ZP element Choice of the quasi-interpolant functional Minimality | 68
68
69
72
73 | | Quasi-interpolants via Neumann series
Quasi-interpolants via Fourier transform
Example: the ZP element
Notes | 74
76
77
78 | Contents xi ## Chapter IV $\,\cdot\,\,$ Cardinal interpolation & difference equations | Correct and singular cardinal interpolation | 79 | |--|--------| | Example: univariate and bivariate quadratic box splines | 80 | | Symbol and fundamental solution | 81 | | Example: three-direction mesh | 84 | | Correctness and linear independence | 87 | | Example: centered hat function | 88 | | Singular cardinal interpolation | 92 | | Example: the centered ZP element | 95 | | Bivariate four-direction box splines with even multiplicities | 95 | | The approximation order of cardinal interpolation | 99 | | Notes | 101 | | | | | Chapter V · Approximation by cardinal splines & wavele | ets | | Fundamental domains | 105 | | Properties of Ω_{Ξ} | 108 | | Example: two-direction mesh | 111 | | Example: three-direction mesh | 114 | | Convergence of cardinal splines | 117 | | Relation to cardinal series | 120 | | Example: three-direction mesh | 122 | | Wavelet decompositions | 124 | | Wavelets in dimensions ≤ 3 | 132 | | Notes | 135 | | hapter VI \cdot Discrete box splines & linear diophantine equa | ations | | maple: 11 District Son spinios & most dispitations equi | | ## \mathbf{C} S | Definition | 137 | |---|-----| | Geometric description | 138 | | Support | 138 | | Convolution | 139 | | Construction | 139 | | Fourier transform | 140 | | Differentiation | 141 | | Annihilation | 142 | | Linear independence | 142 | | Linear diophantine equations | 144 | | Linear independence (continued) | 148 | | On extending to an element of $\Delta(\Xi)$ | 151 | xii Contents | Discrete truncated power | 154 | |---|-----| | The local structure of the discrete box spline | 155 | | Local linear independence | 156 | | Notes | 157 | | Chapter VII · Subdivision algorithms | | | Masks | 160 | | Geometric derivation of the refinement equation | 161 | | Factorization of the mask | 162 | | Example: two-direction mesh | 164 | | Subdivision as discrete smoothing | 164 | | Linear convergence of subdivision | 165 | | Example: linear convergence is best possible | 168 | | Quadratic convergence of subdivision | 169 | | Example: the ZP element | 172 | | Notes | 173 | | References | 175 | | Index | 193 |