CONTENTS

5

37

1.	The	Energy and Weak Formulations	
	1.1.	The Classical Formulation and the Finite	
		Difference Method 5	
	1.2.	The Energy Formulation and Variational Finite	
		Element Method 8	
	1.3.	The Weak Formulation and Galerkin Finite	
		Element Method 15	
	1.4.	Comparison of the Three Formulations 18	
	1.5.	Assembly by Nodes 21	
		Assembly by Elements 22	
	1.7.	General Outline of FEM 25	
	1.8.	Observations and References 29	
		Exercises 30	
2.	The Finite Element Method for		
	Two-Space-Variable Problems		
	2.1.	Triangular Elements and Linear Shape Functions 37	

Introduction

1.

	٠	

3.

5.

CONTENTS

2.2. 2.3. 2.4. 2.5. 2.6.	The Finite Element Program FEMI 53 A More General Problem 61	
Asse	embly by Nodes and a Reduced System Matrix	7 3
3.1.	Programming Assembly by Nodes 73	
3.2.		
3.3.	A Reduced System Matrix 75	
3.4.		
	by Iteration 77	
3.5.	Observations and References 79 Exercises 79	
Shap	pe Functions	81
4.1.	Linear Shape Functions on Tetrahedral Elements 81	
4.2.	Quadratic Shape Functions on	
4.2	Interval Elements 85	
4.3.	Quadratic Shape Functions on Triangular Elements 90	
4.4.	Bilinear Shape Functions on	
	Rectangular Elements 100	
4.5.	Complete Cubic Shape Functions	
	on Triangular Elements 105	
4.6.	Observations and References 108	
	Exercises 108	
Erro	r Estimates and Existence	111
5.1.	Definitions of $a(u, \psi)$, $H_0^1(0, L)$ 112	
	Linear Spaces of Real-Valued Functions 118	
5.3.	Properties of $a(u, \psi)$ 120	

CONTENTS	ix

5.4.	Interpolation, Completeness, and Continuity of Functions in $H_0^1(0, L)$ 123	
5.5.	Equivalence of Classical, Energy, and Weak Formulations 130	
5.6.	Error Estimates 131	
	Existence 133	
	Observations and References 137 Exercises 138	
Tim	e-Dependent Problems	143
6.1.	A Sample Problem 143	
6.2.		
6.3.		
6.4.		
6.5.		
6.6.	FEM for Two Space Variables 168	
6.7.		
	Exercises 172	
Nun	nerical Solution of Nonlinear Algebraic Systems	177
7.1.	Motivating Examples 177	
7.2.		
7.3.		
7.4.		
	Quasi-Newton Method (Broyden) 209	
7.6.	Continuation (Homotopy) Method 218	
7.7.	Nonlinear Gauss-Seidel-SOR Method 224	
7.8.	Observations and References 230	
	Exercises 230	
Appl	ications to Nonlinear Partial Differential Equations	233
8.1	Comparison of Linear and Nonlinear	
J.1.	FEM Problems 233	
8.2.		

6.

7.

8.

9.

	8.3. 8.4.	Burger's Equation 249 Incompressible Viscous Fluid Flow—Explicit	
	0.4.	Method 254	
	8.5.	Incompressible Viscous Fluid Flow—Implicit	
		Method 265	
		Stefan Problem 269	
	8.7.	Observations and References 284	
		Exercises 284	
9.	Varia	ational Inequalities	287
	9.1.	Obstacle Problem on a String—a	
		Motivating Example 288	
	9.2.	Elliptic Variational Inequalities 293	
	9.3.	The Discrete Problem and an Algorithm 295	
	9.4.	Fluid Flow in a Porous Medium 299	
	9.5.	Parabolic Variational Inequalities 306	
	9.6.	Observations and References 311	
		Exercises 311	
Аp	pend	ixes. Some Nonlinear Problems and Their Computer Programs	313
			0.0
	A.1.	FEMI Written In Pascal: Steady-State	
		Heat Conduction 313	
	A. 2.	Newton's Method: Heat Flow in a	
		Resistance Transducer 323 Nonlinear Gauss-Seidel Method: Solidification	
	A.3.	of Water in a Channel—the Stefan Problem 330	
	A 1	Variational Inequalities: Steady-State Flow	
	A.4.	in a Porous Medium—an Axisymmetric	
		Water Filter 341	
		11 atti 1 11tti - 571	
Re	feren	ces	349
l-s	dex		351