Inhaltsverzeichnis

_	Kondition und Stabilität	
	1.1 Definition von Fehlergrößen	
	1.2 Dezimaldarstellung von Zahlen	
	1.3 Fehlerquellen	
	1.3.1 Eingabefehler	,
	1.3.2 Verfahrensfehler	•
	1.3.3 Fehlerfortpflanzung und die Kondition eines Problems	
	1.3.4 Rechnungsfehler und numerische Stabilität	
	1.4 Zählen von Operationen	
2	Numerische Verfahren zur Lösung nichtlinearer Gleichungen 1	3
	2.1 Aufgabenstellung und Anwendungsempfehlungen	13
	2.2 Definitionen und Sätze über Nullstellen	4
	2.3 Allgemeines Iterationsverfahren	
	2.3.1 Konstruktionsmethode und Definition	
	2.3.2 Existenz von Lösungen und Eindeutigkeit der Lösung 1	6
	2.3.3 Konvergenz eines Iterationsverfahrens, Fehlerabschätzungen, Rechnungsfehler	8
	2.3.4 Praktische Durchführung	20
	2.4 Konvergenzordnung eines Iterationsverfahrens	3
	2.4.1 Definition und Sätze	:3
	2.4.2 Experimentelle Bestimmung der Konvergenzordnung 2	:5
	2.5 Newtonsche Verfahren	5
	2.5.1 Das Newtonsche Verfahren für einfache Nullstellen 2	:5
	2.5.2 Gedämpftes Newton-Verfahren2	7

2.5.3 Das Newtonsche Verfahren für mehrfache Nullstellen.
Das modifizierte Newtonsche Verfahren
2 6 Regula Falsi
2.6.1 Regula Falsi für einfache Nullstellen
2.6.2 Modifizierte Regula Falsi für mehrfache Nullstellen30
2.6.3 Primitivform der Regula Falsi30
2.7 Verfahren von Steffensen
2.7.1 Das Verfahren von Steffensen für einfache Nullstellen31
2.7.2 Das modifizierte Steffensen-Verfahren für mehrfache
Nullstellen32
2.8 Einschlußverfahren
2.8.1 Das Bisektionsverfahren
2.8.2 Das Pegasus-Verfahren
2.8.3 Das Verfahren von Anderson-Björck
2.8.4 Die Verfahren von King und Anderson-Björck-King.
Das Illinois-Verfahren
2.8.5 Das Zeroin-Verfahren
2.9 Effizienz der Verfahren und Entscheidungshilfen39
41
3 Verfahren zur Lösung algebraischer Gleichungen41
3.1 Vorbemerkungen
3.2 Das Horner-Schema
3.2.1 Das einfache Horner-Schema für reelle Argumentwerte42
3.2.2 Das einfache Horner-Schema für komplexe Argumentwerte43
3.2.3 Das vollständige Horner-Schema für reelle Argumentwerte 45
3.2.4 Anwendungen
3.3 Methoden zur Bestimmung sämtlicher Lösungen algebraischer Gleichungen
3.3.1 Vorbemerkungen
3.3.1 Vorbemerkungen
3.3.2 Das Verfahren von Muller
3.3.3 Das Verfahren von Bauhuber
3.3.4 Das Verfahren von Jenkins und Traub
3.3.5 Das Verfahren von Laguerre
3.4 Entscheidungshilfen55
4 Direkte Verfahren zur Lösung linearer Gleichungssysteme . 57
4.1 Aufgabenstellung
4.2 Definitionen und Sätze

64
55
66
6
0
1
73
4
' 5
6
6
30
33
34
37
37
) (
39
)1
)1
3
96
96
•
8
)1
)6
1
1
13
16
17
18

4.16.1 Vorbemerkungen
4.16.2 Gauß-Algorithmus für Blocksysteme
4.16.3 Gauß-Algorithmus für tridiagonale Blocksysteme121
4.16.4 Weitere Block-Verfahren
4.17 Algorithmus von Cuthill-McKee für dünn besetzte, sym-
metrische Matrizen122
4.18 Entscheidungshilfen für die Auswahl des Verfahrens127
5 Iterationsverfahren zur Lösung linearer Gleichungssysteme 131
5.1 Vorbemerkungen und Entscheidungshilfen
5.2 Vektor- und Matrixnormen
5.3 Das Iterationsverfahren in Gesamtschritten
5.4 Das Iterationsverfahren in Einzelschritten oder das
Gauß-Seidelsche Iterationsverfahren
5.5 Relaxation beim Gesamtschrittverfahren
5.6 Relaxation beim Einzelschrittverfahren. SOR-Verfahren140
5.6.1 Iterationsvorschrift
5.6.2 Schätzung des Relaxationskoeffizienten.
Adaptives SOR-Verfahren141
6 Systeme nichtlinearer Gleichungen145
6.1 Allgemeines Iterationsverfahren für Systeme
6.2 Spezielle Iterationsverfahren
6.2.1 Newtonsche Verfahren für nichtlineare Systeme
6.2.1.1 Das quadratisch konvergente Newton-Verfahren150
6.2.1.2 Gedämpftes Newton-Verfahren für Systeme
6.2.2 Regula Falsi für nichtlineare Systeme
6.2.3 Das Verfahren des stärksten Abstiegs (Gradienten-
verfahren) für nichtlineare Systeme
6.2.4 Das Verfahren von Brown für Systeme
6.3 Entscheidungshilfen für die Auswahl der Methode
7 Eigenwerte und Eigenvektoren von Matrizen
7.1 Definitionen und Aufgabenstellungen
7.2 Diagonalähnliche Matrizen
7.3 Das Iterationsverfahren nach v. Mises
7.3.1 Bestimmung des betragsgrößten Eigenwertes und des
zugehörigen Eigenvektors

	7.3.2 Bestimmung des betragskleinsten Eigenwertes
	7.3.3 Bestimmung weiterer Eigenwerte und Eigenvektoren 168
	7.4 Konvergenzverbesserung mit Hilfe des Rayleigh-Quotienten
	im Falle hermitescher Matrizen169
	7.5 Das Verfahren von Krylov
	7.5.1 Bestimmung der Eigenwerte
	7.5.2 Bestimmung der Eigenvektoren
	7.6 Bestimmung der Eigenwerte positiv definiter, symmetrischer,
	tridiagonaler Matrizen mit Hilfe des QD-Algorithmus173
	7.7 Transformationen auf Hessenbergform, LR- und QR-Verfahren 175
	7.7.1 Transformation einer Matrix auf obere Hessenbergform175
	7.7.2 LR - Verfahren
	7.7.3 QR - Verfahren
	7.8 Eigenwerte und Eigenvektoren einer Matrix nach den Verfahren
	von Martin, Parlett, Peters, Reinsch und Wilkinson180
	7.9 Entscheidungshilfen
8	Lineare und nichtlineare Approximation183
	8.1 Lineare Approximation
	8.1.1 Approximationsaufgabe und beste Approximation185
	8.1.2 Kontinuierliche lineare Approximation im quadratischen
	Mittel
	8.1.3 Diskrete lineare Approximation im quadratischen Mittel 192
	8.1.3.1 Normalgleichungen für den diskreten linearen Ausgleich . 192
	8.1.3.2 Diskreter Ausgleich durch algebraische Polynome
	unter Verwendung orthogonaler Polynome
	8.1.3.3 Lineare Regression. Ausgleich durch lineare
	algebraische Polynome
	8.1.3.4 Householdertransformation zur Lösung des linearen
	Ausgleichsproblems
	8.1.4 Approximation von Polynomen durch Tschebyscheff- Polynome
	8.1.4.1 Beste gleichmäßige Approximation, Definition
	8.1.4.2 Approximation durch Tschebyscheff-Polynome
	8.1.4.2 Approximation durch 1schebyschen-Polynome
	8.1.5.1 Approximation periodischer Funktionen im quadratischen Mittel
	8.1.5.2 Trigonometrische Interpolation
	0.1.0.2 Iligonomentame interpolation

8.1.5.3 Komplexe diskrete Fourier-Transformation (FFT)	213
8.2 Nichtlineare Approximation	214
8.2.1 Transformationsmethode beim nichtlinearen Ausgleich	215
8.2.2 Nichtlinearer Ausgleich im quadratischen Mittel	217
8.3 Entscheidungshilfen	218
9 Polynomiale und rationale Interpolation	221
9.1 Aufgabenstellung zur Interpolation durch algebraische Polynor	
9.2 Interpolationsformeln von Lagrange	
9.2.1 Lagrangesche Formel für beliebige Stützstellen	
9.2.2 Lagrangesche Formel für äquidistante Stützstellen	
9.3 Das Interpolationsschema von Aitken für beliebige Stützstelle	
9.4 Inverse Interpolation nach Aitken	
9.5 Interpolationsformeln von Newton	
9.5.1 Newtonsche Formel für beliebige Stützstellen	
9.5.2 Newtonsche Formel für äquidistante Stützstellen	
9.6 Restglied der Interpolation und Aussagen zur Abschätzung	
und Schätzung des Interpolationsfehlers	231
9.7 Rationale Interpolation	233
9.8 Interpolation bei Funktionen mehrerer Veränderlichen	237
9.8.1 Interpolationsformel von Lagrange bei Funktionen von	
zwei Veränderlichen	
9.8.2 Shepard-Interpolation	239
9.9 Entscheidungshilfen für die Auswahl des zweckmäßigen	
Interpolationsverfahrens	243
10 Interpolierende Polynomsplines zur Konstruktion glatter	
Kurven	245
10.1 Polynomsplines dritten Grades	245
10.1.1 Definition der Splinefunktionen	246
10.1.2 Berechnung der nichtparametrischen kubischen Splines	248
10.1.3 Berechnung der parametrischen kubischen Splines	253
10.1.4 Kombinierte interpolierende Polynom-Splines	259
10.1.5 Konvergenz und Fehlerabschätzungen interpolierender	
kubischer Splines	
10.2 Hermite-Splines fünften Grades	
10.2.1 Definition der Hermite-Splines	
10.2.2 Rerechnung der nichtnarametrischen Hermite Splines	266

10.2.3 Berechnung der parametrischen Hermite-Splines	272
10.3 Entscheidungshilfen zur Auswahl der geeigneten inter- polierenden oder approximierenden Splinemethode	275
11 Polynomiale Ausgleichssplines 3. Grades zur	
Konstruktion glatter Kurven	
11.1 Problemstellung	
11.2 Definition der Splinefunktionen	
11.3 Berechnung der nichtparametrischen kubischen Ausgleichssp	
11.4 Berechnung der parametrischen kubischen Ausgleichssplines	
11.5 Entscheidungshilfen	291
12 Zweidimensionale Splines, Oberflächensplines, Bézier-	
Splines, B-Splines	293
12.1 Interpolierende zweidimensionale Polynomsplines dritten	
Grades zur Konstruktion glatter Flächen	
12.2 Zweidimensionale interpolierende Oberflächensplines	
12.3 Bézier-Splines	
12.3.1 Bézier-Spline-Kurven	
12.3.2 Bézier-Spline-Flächen	
12.3.3 Modifizierte (interpolierende) kubische Bézier-Splines .	
12.4 B-Splines	
12.4.1 B-Spline-Kurven	
12.4.2 B-Spline-Flächen	
12.5 Entscheidungshilfen	330
13 Akima- und Renner-Subsplines	333
13.1 Akima-Subsplines	333
13.2 Renner-Subsplines	336
13.3 Abrundung von Ecken bei Akima- und Renner-Kurven	
13.4 Näherungsweise Berechnung der Bogenlänge einer Kurve	341
13.5 Entscheidungshilfen	343
14 Numerische Differentiation	345
14.1 Aufgabenstellung	345
14.2 Differentiation mit Hilfe eines Interpolationspolynoms	
14.3 Differentiation mit Hilfe interpolierender kubischer	
Polynom-Splines	350

14.4	Differentiation nach dem Romberg-Verfahren	350
14.5	Entscheidungshilfen	352
	merische Quadratur	
	Vorbemerkungen	
	Konstruktion von Interpolationsquadraturformeln	
	Newton-Cotes-Formeln	
	.3.1 Die Sehnentrapezformel	
	.3.2 Die Simpsonsche Formel	
	.3.3 Die 3/8-Formel	
	.3.4 Weitere Newton-Cotes-Formeln	364
15	.3.5 Zusammenfassung zur Fehlerordnung von	000
15.4	Newton-Cotes-Formeln	
	Quadraturformeln von Maclaurin	
	4.1 Die Tangententrapezformel	
	.4.2 Weitere Maclaurin-Formeln	
	Die Euler-Maclaurin-Formeln	
	Quadraturformeln von Gauß	
	Einfache Berechnung von Gewichten und Stützstellen	3/3
10.0	verallgemeinerter Gauß-Quadraturformeln	370
15.9	Quadraturformeln von Clenshaw-Curtis	
	Das Verfahren von Romberg	
	Fehlerschätzung und Rechnungsfehler	
	Adaptive Quadraturverfahren	
	Konvergenz der Quadraturformeln	
	Entscheidungshilfen für die Auswahl der geeigneten Methode	
16 Nu	merische Kubatur	393
16.1	Problemstellung	393
16.2	Konstruktion von Interpolationskubaturformeln	396
16.3	Newton-Cotes-Formeln für rechteckige Integrationsbereiche	399
	Newton-Cotes-Kubaturformeln für Dreieckbereiche	
	Das Romberg-Kubaturverfahren für Rechteckbereiche	
	Gauß-Kubaturformeln für Rechteckbereiche	
16.7	Gauß-Kubaturformeln für Dreieckbereiche	410
16	.7.1 Dreieckbereiche mit achsenparallelen Katheten	410

16.7.2 Dreiecke in allgemeiner Lage	411
16.8 Berechnung des Riemannschen Flächenintegrals mit	
bikubischen Splines	412
16.9 Entscheidungshilfen	413
17 Anfangswertprobleme bei gewöhnlichen Differential-	
gleichungen	
17.1 Problemstellung	
17.2 Prinzip der numerischen Verfahren	
17.3 Einschrittverfahren	
17.3.1 Das Polygonzugverfahren von Euler-Cauchy	
17.3.2 Das verbesserte Euler-Cauchy-Verfahren	
17.3.3 Praediktor-Korrektor-Verfahren von Heun	
17.3.4 Explizite Runge-Kutta-Verfahren	
17.3.4.1 Konstruktion von Runge-Kutta-Verfahren	422
17.3.4.2 Klassisches Runge-Kutta-Verfahren	423
17.3.4.3 Zusammenstellung expliziter Runge-Kutta-Formeln .	
17.3.4.4 Einbettungsformeln	429
17.3.5 Implizite Runge-Kutta-Verfahren vom Gauß-Typ	442
17.3.6 Gemeinsame Darstellung aller Einschrittverfahren.	
Verfahrensfunktion eines Einschrittverfahrens.	
Konsistenz	
17.3.7 Fehlerschätzung und Schrittweitensteuerung	
17.3.7.1 Fehlerschätzung	446
17.3.7.2 Methoden zur automatischen Schrittweitensteuerung,	4.45
adaptive Anfangswertproblemlöser	
17.4.1 Prinzip der Mehrschrittverfahren	
17.4.2 Das explizite Verfahren von Adams-Bashforth	
17.4.3 Das Fraediktor-Korrektor-Verlahren von Adams-Moulto 17.4.4 Verfahren von Adams-Störmer	
17.4.4 Verlahren von Adams-Stormer	
17.4.6 Rechnungsfehler für Ein- und Mehrschrittverfahren	
17.5 Extrapolationsverfahren von Bulirsch-Stoer-Gragg	
17.6 Stabilität	
17.6.1 Vorbemerkungen	
17.6.2 Stabilität der Differentialgleichung	
17.0.0 Stadilität des humerischen Verlahrens	4n/

17.7 Steife Differentialgleichungssysteme
17.7.1 Problemstellung
17.7.2 Kriterien für Steifheit eines Systems
17.7.3 Das Verfahren von Gear zur Integration steifer Systeme 473
17.8 Entscheidungshilfen bei der Wahl des Verfahrens
18 Randwertprobleme bei gewöhnlichen Differential-
gleichungen485
18.1 Problemstellung
18.2 Zurückführung des Randwertproblems auf ein
Anfangswertproblem
18.2.1 Randwertprobleme für nichtlineare Differentialgleichungen
zweiter Ordnung
18.2.2 Randwertprobleme für Systeme von Differential-
gleichungen erster Ordnung
18.3 Differenzenverfahren
18.3.1 Das gewöhnliche Differenzenverfahren
18.3.2 Differenzenverfahren höherer Näherung
18.3.3 Iterative Auflösung der linearen Gleichungssysteme
zu speziellen Randwertproblemen
18.3.4 Lineare Eigenwertprobleme
Anhang: ANSI C - Programme
Vorwort zum Anhang
Informationen für Hochschulangehörige und Studenten
Inhaltsverzeichnis des Anhangs
ANSI C - Programme
Symbolverzeichnis des Anhangs
Literaturverzeichnis
Literatur zu weiteren Themengebieten
- Numerische Behandlung partieller Differentialgleichungen 1095
- Methode der Finiten Elemente
- Methode dei Pinnten Eiemente1090
Sachwortverzeichnic 1101