TABLE OF CONTENTS

	PREF	ACE		v
	ACK	NOWLE	EDGMENTS	vii
	ABO	UT THE	E AUTHORS	viii
١.	THE	RMODY	YNAMIC FUNDAMENTALS	1
	1.1.	Introdu	uction	1
	1.2.	Energy	v	1
			Applications of energy	1
			Concept of energy	2
			Forms of energy	2
			The first law of thermodynamics	3
			Energy and the FLT	4
			Economic aspects of energy	4
			Energy audit methods	5
			Energy management	5
	1.3.	Entrop		6
		1.3.1.	Order and disorder and reversibility and irreversibility	6
		1.3.2.	Characteristics of entropy	7
		1.3.3.	Significance of entropy	8
		1.3.4.	Carnot's contribution	9
		1.3.5.	The second law of thermodynamics	9
		1.3.6.	SLT statements	10
		1.3.7.	The Clausius inequality	10
		1.3.8.	Useful relationships	11
	1.4.	Exergy	y	11
		1.4.1.	The quantity exergy	11
			Exergy analysis	11
		1.4.3.	Characteristics of exergy	12
			The reference environment	12
		1.4.5.	Exergy vs. energy	13
			Exergy efficiencies	14
			Solar exergy and the earth	14
	1.5.		ative examples	15
			Illustrative example 1	15
			Illustrative example 2	16
			Illustrative example 3	17
			Illustrative example 4	19
	1.6.		g remarks	21
		Proble	ms	21
2.	EXE	RGY AN	ND ENERGY ANALYSES	23
	2.1.	Introdu	uction	23
	2.2.		energy and exergy analyses?	23

	2.3.	Nomenclature	24
	2.4.	Balances for mass, energy and entropy	24
		2.4.1. Conceptual balances	24
		2.4.2. Detailed balances	24
	2.5.	Exergy of systems and flows	26
		2.5.1. Exergy of a closed system	26
		2.5.2. Exergy of flows	27
	2.6.	Exergy consumption	28
	2.7.	Exergy balance	28
	2.8.	Reference environment	29
		2.8.1. Theoretical characteristics of the reference environment	29
		2.8.2. Models for the reference environment	29
	2.9.	Efficiencies and other measures of merit	31
		Procedure for energy and exergy analyses	32
		Energy and exergy properties	32
		Implications of results of exergy analyses	33
		Closing remarks	34
	2.13.	Problems	34
		FIGURETIS	31
3.	EXER	GY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT	36
	3.1.	Introduction	36
	3.2.	Exergy and environmental problems	37
	J. L .	3.2.1. Environmental concerns	37
		3.2.2. Potential solutions to environmental problems	40
		3.2.3. Energy and environmental impact	42
		3.2.4. Thermodynamics and the environment	42
	2 2		45
	3.3.	Exergy and sustainable development	45
		3.3.1. Sustainable development	45
		3.3.2. Sustainability and its need	46
		3.3.3. Dimensions of sustainability	47
		3.3.4. Environmental limits and geographic scope	47
		3.3.5. Environmental, social and economic components of sustainability	47
		3.3.6. Industrial ecology and resource conservation	49
		3.3.7. Energy and sustainable development	49
		3.3.8. Energy and environmental sustainability	
		3.3.9. Exergy and sustainability	49
		3.3.10. Exergetic aspects of sustainable processes	51
		3.3.11. Renewables and tools for sustainable development	51
		3.3.12. Exergy as a common sustainability quantifier for process factors	55
	3.4.	Illustrative example	56
		3.4.1. Implications regarding exergy and energy	57
		3.4.2. Implications regarding exergy and the environment	58
		3.4.3. Implications regarding exergy and sustainable development	58
	3.5.	Closing remarks	58
		Problems	59
4.	APPL	ICATIONS OF EXERGY IN INDUSTRY	60
	4.1.	Introduction	60
	4.2.	Questions surrounding industry's use of exergy	61
	4.3.	Advantages and benefits of using exergy	61
		4.3.1. Understanding thermodynamic efficiencies and losses through exergy	62
		4.3.2. Efficiency	62
		4.3.3. Loss	63
		······	

		Table of Contents	х
		4.3.4. Examples	63
	4.4.	4.3.5. Discussion Understanding energy conservation through exergy	64 64
	7.7.	4.4.1. What do we mean by energy conservation?	64
		4.4.2. Exergy conservation	65
		4.4.3. Examples	65
		Disadvantages and drawbacks of using exergy	66
		Possible measures to increase applications of exergy in industry	66
	4.7.	Closing remarks Problems	67 67
5.	EXER	RGY IN POLICY DEVELOPMENT AND EDUCATION	68
	5.1.	Introduction	68
	5.2.	Exergy methods for analysis and design	68
	5.3.	The role and place for exergy in energy-related education and awareness policies	70
		5.3.1. Public understanding and awareness of energy	70
		5.3.2. Public understanding and awareness of exergy	70
		5.3.3. Extending the public's need to understand and be aware of exergy to government	
	5.4.	and the media The role and place for exergy in education policies	71 71
	J.4.	5.4.1. Education about exergy	71
		5.4.2. The need for exergy literacy in scientists and engineers	72
		5.4.3. Understanding the second law through exergy	72
		5.4.4. Exergy's place in a curriculum	73
	5.5.	Closing remarks	74
		Problems	75
6.	EXER	RGY ANALYSIS OF PSYCHROMETRIC PROCESSES	76
	6.1.	Basic psychrometric concepts	76
	6.2.	Balance equations for air-conditioning processes	78
	6.3.	Case study: exergy analysis of an open-cycle desiccant cooling system 6.3.1. Introduction	82 82
		6.3.2. Operation and design of experimental system	82
		6.3.3. Energy analysis	84
		6.3.4. Exergy analysis	84
		6.3.5. Results and discussion	87
	6.4.		89
		Problems	89
7.	EXER	RGY ANALYSIS OF HEAT PUMP SYSTEMS	91
	7.1.	Introduction	91
	7.2.	System description	93
	7.3. 7.4.	General analysis	94 95
	7.4. 7.5.	System exergy analysis Results and discussion	98
	-	Concluding remarks	98
		Problems	102
8.	EXER	GY ANALYSIS OF DRYING PROCESSES AND SYSTEMS	103
	8.1.	Introduction	103
	8.2.	Exergy losses associated with drying	104
	8.3.	Analysis	105

		8.3.1. Balances	105
		8.3.2. Exergy efficiency	106
	8.4.	Importance of matching supply and end-use heat for drying	107
	8.5.	Illustrative example	107
		8.5.1. Approach	107
		8.5.2. Results	107
		8.5.3. Discussion	110
	8.6.	Energy analysis of fluidized bed drying of moist particles	112
		8.6.1. Fluidized bed drying	112
		8.6.2. Thermodynamic model and balances	114
		8.6.3. Efficiencies for fluidized bed drying	116
		8.6.4. Effects of varying process parameters	117
		8.6.5. Example	117
	8.7.	Concluding remarks	126
		Problems	126
9.	EXER	RGY ANALYSIS OF THERMAL ENERGY STORAGE SYSTEMS	127
	9.1.	Introduction	127
	9.1. 9.2.	Principal thermodynamic considerations in TES	128
	9.2. 9.3.	Exergy evaluation of a closed TES system	129
	9.3.	9.3.1. Analysis of the overall processes	129
		9.3.2. Analysis of the overall processes	131
		9.3.3. Implications for subprocesses and overall process	133
	9.4.	Relations between temperature and efficiency for sensible TES	134
	9.4.	9.4.1. Model and analysis	134
		9.4.2. Efficiencies and their dependence on temperature	135
	9.5.	Exergy analysis of thermally stratified storages	137
	9.3.	9.5.1. General stratified TES energy and exergy expressions	137
		9.5.2. Temperature-distribution models and relevant expressions	139
		9.5.3. Increasing TES exergy storage capacity using stratification	142
	9.6.	Energy and exergy analyses of cold TES systems	145
	9.0.	9.6.1. Energy balances	146
			148
		9.6.2. Exergy balances 9.6.3. Efficiencies	148
	0.7		149
	9.7.	Exergy analysis of aquifer TES systems 9.7.1. ATES model	149
		9.7.2. Energy and exergy analyses	150
	0.0	Examples and case studies	152
	9.8.	9.8.1. Inappropriateness of energy efficiency for TES evaluation	152
		9.8.2. Comparing thermal storages	152
		9.8.3. Thermally stratified TES	155
		9.8.4. Cold TES	156
		9.8.5. Aquifer TES	159
	9.9.	Concluding remarks	162
	7.7.	Problems	162
10	FYE	ERGY ANALYSIS OF RENEWABLE ENERGY SYSTEMS	163
10			
	10.1	1. Exergy analysis of solar photovoltaic systems	163 164
		10.1.1. PV performance and efficiencies	164
		10.1.2. Physical exergy	165
		10.1.3. Chemical exergy	
		10.1.4. Illustrative example	167
		10.1.5. Closure	167 167
	10.2	2. Exergy analysis of solar ponds	10/

		Table of Contents	xiii
		10.2.1. Solar ponds	169
		10.2.2. Experimental data for a solar pond	170
		10.2.3. Energy analysis	172
		10.2.4. Exergy analysis	180
	10.0	10.2.5. Closure	185
	10.3.	Exergy analysis of wind energy systems	187
		10.3.1. Wind energy systems	188
		10.3.2. Energy and exergy analyses of wind energy aspects 10.3.3. Case study	189
		10.3.4. Spatio-temporal wind exergy maps	192
		10.3.5. Closure	196 204
	10.4.	Exergy analysis of geothermal energy systems	204
	10	10.4.1. Case study 1: energy and exergy analyses of a geothermal district heating system	207
		10.4.2. Case study 2: exergy analysis of a dual-level binary geothermal power plant	217
	10.5.	Closing remarks	226
		Problems	227
11.	EXE	RGY ANALYSIS OF STEAM POWER PLANTS	229
	11.1.	Introduction	229
	11.2.	Analysis	230
		11.2.1. Balances	230
		11.2.2. Overall efficiencies	231
		11.2.3. Material energy and exergy values	231
		Spreadsheet calculation approaches	233
		Example: analysis of a coal steam power plant	235
		Example: impact on power plant efficiencies of varying boiler temperature and pressure	235
	11.0.	Case study: energy and exergy analyses of coal-fired and nuclear steam power plants	238
		11.6.1. Process descriptions 11.6.2. Approach	239 245
		11.6.3. Analysis	245
		11.6.4. Results	246
		11.6.5. Discussion	248
	11.7.	Improving steam power plant efficiency	252
		11.7.1. Exergy-related techniques	252
		11.7.2. Computer-aided design, analysis and optimization	253
		11.7.3. Maintenance and control	253
		11.7.4. Steam generator improvements	253
		11.7.5. Condenser improvements	254
		11.7.6. Reheating improvements	254
		11.7.7. Regenerative feedwater heating improvements	255
	110	11.7.8. Improving other plant components	255
	11.0.	Closing remarks Problems	256 256
12.	EXER	GY ANALYSIS OF COGENERATION AND DISTRICT ENERGY SYSTEMS	257
		Introduction	257
		Cogeneration	257 258
		District energy	259
		Integrated systems for cogeneration and district energy	260
		Simplified illustrations of the benefits of cogeneration	261
		12.5.1. Energy impacts	261
		12.5.2. Energy and exergy efficiencies	263
		12.5.3. Impact of cogeneration on environmental emissions	264
		12.5.4. Further discussion	265

	12.6.	Case study for cogeneration-based district energy	265
		12.6.1. System description	265
		12.6.2. Approach and data	267
		12.6.3. Preliminary analysis	267
		12.6.4. Analysis of components	268
		12.6.5. Analysis of overall system	272
		12.6.6. Effect of inefficiencies in thermal transport	272
		12.6.7. Analyses of multi-component subsystems	272
		12.6.8. Results	272
		12.6.9. Discussion	274
	12.7.	Closing remarks	275
		Problems	276
13.	EXE	RGY ANALYSIS OF CRYOGENIC SYSTEMS	277
		Introduction	277
		Energy and exergy analyses of gas liquefaction systems	277
	13.3.	Exergy analysis of a multistage cascade refrigeration cycle for natural gas liquefaction	281
		13.3.1. Background	281
		13.3.2. Description of the cycle	281
		13.3.3. Exergy analysis	282
		13.3.4. Minimum work for the liquefaction process	285
		13.3.5. Discussion	288
	13.4.	Closing remarks	288
		Problems	288
14.	EXE	RGY ANALYSIS OF CRUDE OIL DISTILLATION SYSTEMS	290
	14 1	Introduction	290
		Analysis approach and assumptions	291
		Description of crude oil distillation system analyzed	291
	17.5.	14.3.1. Overall system	291
		14.3.2. System components	292
	14.4	System simulation	294
			294
	14.5.	Energy and exergy analyses	294
		14.5.1. Crude heating furnace	294 295
		14.5.2. Atmospheric distillation unit	
	146	14.5.3. Overall exergy efficiency	296
	14.6.	Results and discussion	296
		14.6.1. Simulation results	296
		14.6.2. Energy and exergy results	296
		14.6.3. Impact of operating parameter variations	298
		14.6.4. Result limitations	300
	14.7.	Closing remarks	301
		Problems	302
15.	EXE	RGY ANALYSIS OF FUEL CELL SYSTEMS	303
	15.1	Introduction	303
		Background	304
		15.2.1. PEM fuel cells	304
		15.2.2. Solid oxide fuel cells	304
	153	Exergy analysis of a PEM fuel cell power system	305
	10.0.	15.3.1. System description	305
		15.3.2. PEM fuel cell performance model	306
		15.3.3. Analysis	307
		ر بسند ، دربر بران ا	207

Table	of Conte	nt

χv

		15.3.4. Results and discussion	308
	15.4	15.3.5. Closure	312
	13.4.	Energy and exergy analyses of combined SOFC–gas turbine systems 15.4.1. Description of systems	313
		15.4.2. Analysis	313
		15.4.3. Thermodynamic model of the SOFC stack	315 318
		15.4.4. Exergy balances for the overall systems	319
		15.4.5. Results and discussion	320
		15.4.6. Closure	323
	15.5.	Closing remarks	323
		Problems	323
16.	EXE	RGY ANALYSIS OF AIRCRAFT FLIGHT SYSTEMS	325
	16.1.	Introduction	325
	16.2.	Exergy analysis of a turbojet	326
		16.2.1. Exergy flows through a turbojet	326
		16.2.2. Exergy efficiencies for a turbojet	328
		16.2.3. Impact of environment on turbojet assessment	328
		Flight characteristics	329
	16.4.	Cumulative rational efficiency	329
		16.4.1. Variable reference environment	329
		16.4.2. Constant reference environment	331
		Cumulative exergy loss	332
	16.6.	Contribution of exhaust gas emission to cumulative exergy loss	332
		16.6.1. Variable reference environment	332
	167	16.6.2. Constant reference environment	333
	10.7.	Closing remarks Problems	334 334
			334
17.		GOECONOMIC ANALYSIS OF THERMAL SYSTEMS	335
		Introduction	335
	17.2.	Economic aspects of exergy	336
		17.2.1. Exergy and economics	336
	17.3	17.2.2. Energy and exergy prices	337
	17.3.	Modeling and analysis	338
		17.3.1. Fundamental relationships	338
		17.3.2. Definition of key terms17.3.3. Ratio of thermodynamic loss rate to capital cost	340
	17.4	Key difference between economic and thermodynamic balances	341 341
		Example: coal-fired electricity generation	341
	17.5.	17.5.1. Plant description and data	342
		17.5.2. Data categorization	345
		17.5.3. Results and discussion	347
	17.6	Case study: electricity generation from various sources	349
		17.6.1. Results and discussion	350
		17.6.2. Relations for devices in a single generating station	350
		17.6.3. Generalization of results	356
	17.7.	Exergoeconomics extended: EXCEM analysis	357
		17.7.1. The EXCEM analysis concept	357
		17.7.2. Development of a code for EXCEM analysis	357
		17.7.3. Illustrative examples of EXCEM analysis	358
		17.7.4. Exergy loss and cost generation	359
	17.8.	Closing remarks	361
		Problems	361

18.	EXER	GY ANALYSIS OF COUNTRIES, REGIONS AND ECONOMIC SECTORS	363
	18.1.	Introduction	363
	18.2.	Background and benefits	364
	18.3.	Applying exergy to macrosystems	364
		18.3.1. Energy and exergy values for commodities in macrosystems	364
		18.3.2. The reference environment for macrosystems	365
		18.3.3. Efficiencies for devices in macrosystems	366
	18.4.	Case study: energy and exergy utilization in Saudi Arabia	367
		18.4.1. Analysis of the residential sector	368
		18.4.2. Analysis of the public and private sector	371
		18.4.3. Analysis of the industrial sector	377
		18.4.4. Analysis of the transportation sector	380
		18.4.5. Analysis of the agricultural sector	386
		18.4.6. Analysis of the utility sector	388
		18.4.7. Energy and exergy efficiencies and flows for the sectors and country	390
		18.4.8. Discussion	393
		18.4.9. Summary of key findings	394
	18.5.	Comparison of different countries	394
	18.6.	Closing remarks	394
		Problems	395
19.	EXE	RGETIC LIFE CYCLE ASSESSMENT	397
	19.1.	Introduction	397
		Life cycle assessment	397
		Exergetic LCA	398
		Case study: exergetic life cycle analysis	399
		19.4.1. Natural gas and crude oil transport	400
		19.4.2. Natural gas reforming and crude oil distillation	400
		19.4.3. Hydrogen production from renewable energy	402
		19.4.4. Hydrogen compression	403
		19.4.5. Hydrogen and gasoline distribution	404
		19.4.6. Life cycle exergy efficiencies	405
	19.5.	Economic implications of ExLCA	406
	19.6.	LCA and environmental impact	407
		19.6.1. Power generation and transportation	407
		19.6.2. Environmental-impact reduction by substitution of renewables for fossil fuels	409
		19.6.3. Main findings and extensions	415
	19.7.	Closing remarks	415
		Problems	415
20.	EXE	RGY AND INDUSTRIAL ECOLOGY	417
	20.1.	Introduction	417
		Industrial ecology	417
		Linkage between exergy and industrial ecology	418
		20.3.1. Depletion number	418
		20.3.2. Integrated systems	418
	20.4.	Illustrative example	419
		20.4.1. The considered gas-turbine combined cycle with hydrogen generation	419
		20.4.2. Exergy analysis of the gas-turbine combined cycle with hydrogen generation	421
		20.4.3. Results	421
	20.5.	Closing remarks	423
		Problems	423
21.	CLO	SING REMARKS AND FUTURE EXPECTATIONS	424

Table of Contents	xvii
NOMENCLATURE	426
REFERENCES	429
APPENDIX A GLOSSARY OF SELECTED TERMINOLOGY	440
APPENDIX B CONVERSION FACTORS	443
APPENDIX C THERMOPHYSICAL PROPERTIES	445
INDEX	451