Contents

	Preface	XV
1	The study of evidence for natural selection	1
1.1	The birth of evolutionary biology	1
1.2	Developments from 1910 to 1959	3
1.3	The modern synthesis and its critics	1 3 5 7
1.4	The measurement of fitness	7
1.5	Quantitative and polymorphic variation	8
1.6	Varieties of data on natural selection	11
1.7	Sampling problems	14
2	Mark-recapture experiments	15
2.1	The use of mark-recapture experiments	15
2.2	The multi-sample single recapture experiment	16
2.3	Combining and comparing survival estimates	19
2.4	The constant survival – constant recapture probability model	23
2.5	Initial lack of catchability	23 24
2.6	The design of experiments	25
2.7	A common probability of capture model	27
2.8	The varying selective values model	33
2.9	The constant selective values model	34
2.10	Comparison of the models	38
2.11	Mark-recapture experiments in general	40
2.12	Separating death from emigration	41
2.13	Deriving fitness estimates from survival estimates	43
3	Samples taken from a population within one generation	45
3.1	Sampling a population while selective survival is occurring	45
3.2	Selection on a polymorphic population	46
3.3	The intensity and effect of selection on a polymorphic	
	population	51
3.4	Tests for changes in distributions of quantitative variables	55
3.5	Estimating a quadratic fitness function	57
3.6	Selection on a univariate normal distribution	60
3.7	Selection on a multivariate normal distribution	66
3.8	Selection on a non-normal population	73
3.9	The variance of fitness estimates	74

V111	Contents	
3.10	The case of stabilizing selection	75
3.11	Karl Pearson's work and developments from it	75
3.12	The intensity and effect of selection on quantitative variables	75
3.13	The problem of growth	83
4	Comparison of live and dead animals	87
4.1	Comparing distributions for live and dead animals	87
4.2	Samples from a large population with known morph proportions	93
4.3	Samples of dead animals compared with a population sample	96
4.4	Analyses developed for bird banding data	100
4.5	A log-linear model for a decreasing population	101
4.6	Explicit survival estimation with a constant recovery probability	104
4.7	Estimation of a relative death rate function	110
4.8	The intensity and effect of selection	112
5	Complete counts of survivors	116
5.1	Selection on a countable population	116
5.2	Models for selection on quantitative variables	117
5.3	The proportional hazards model	120
5.4	Graphical analysis of the proportional hazards model	121
5.5	The case of stabilizing selection	129
5.6	The Chesson-Manly model for competitive survival	139
5.7	Estimation with a constant population	142
5.8	Estimation with a decreasing population	143
5.9	Hard or soft selection?	146
5.10	The intensity and effect of selection	149
6	Evidence from the spatial distribution of a population	155
6.1	Factors affecting animal distributions	155
6.2	Analyses ignoring spatial patterns	158
6.3	A chi-square randomization test on grouped colonies	159
6.4	An alternative chi-square approach for grouped colonies	163
6.5	The use of multiple regression	165
6.6	The problem of unequal sample sizes	174
6.7	The use of standard methods of multivariate analysis	175
6.8	The Mantel nonparametric test	176
6.9	Constructing distance matrices	180
6.10	Spurious test results due to isolation by distance	186
6.11	The evidence from spatial patterns alone	193
6.12	Analysis of spatial patterns by spatial autocorrelation	195
6.13	The Kluge-Kerfoot phenomenon	196

	Contents	ix
7	Association between related species	197
7.1	Patterns of species association	197
7.2	Borowsky's test for parallel variation	200
7.3	Alternatives to Borowsky's test	207
7.4	Determining 'adequate' sample sizes from colonies	209
7.5	Comparison between allopatric and sympatric colonies	214
7.6	Overall gene frequency comparisons between species	218
8	Gene frequency changes at a single genetic locus	219
8.1	The introduction of genetic considerations	219
8.2	Two alleles at a single locus	220
8.3	Hardy-Weinberg equilibrium	220
8.4	Selection on a randomly mating population	223
8.5	A test for selection	225
8.6	Estimation of selective values: no dominance, samples after selection	230
8.7	Estimation of selective values: no dominance, samples before selection	234
8.8	Estimation of selective values: dominance, samples before selection	236
8.9	Estimation from samples several generations apart	239
8.10	Estimation of selective values: dominance, samples after selection	243
8.11	Estimation from samples after selection several generations	243
0.11	apart	244
8.12	A note of caution	245
8.13	Estimation of selective values in general	249
8.14	Maximum likelihood estimation with the dominance selec-	249
0.1	tion model	253
8.15	Maximum likelihood estimation with several alleles	257
8.16	Estimating the effective population size	259
8.17	Different selective effects on males and females	261
8.18	Analysis of phenotype frequencies	261
9	Equilibrium gene frequencies at a single locus	262
9.1	Introduction	262
9.2	The estimation of gene frequencies	263
9.3	Maximum likelihood estimation by gene counting	265
9.4	Variances and covariances for gene frequency estimators	267
9.5	Tests for Hardy-Weinberg gene frequency ratios	268
9.6	Hardy-Weinberg tests with two alleles	270
9.7	Limitations of Hardy-Weinberg tests	271
9.8	The Ewens-Watterson test	272
9.9	The Ewens-Watterson test on a subdivided population	275

x	Contents	
9.10	The nature of electrophoretic data	283
9.11	Charge-state models	285
9.12	Population samples including mother-offspring combinations	294
10	Linkage disequilibrium and selection at two or more loci	309
10.1	Random mating with two loci	309
10.2	Linkage disequilibrium as evidence of selection	312
10.3	Estimation of linkage disequilibrium from gamete frequencies	314
10.4	Maximum likelihood estimation of linkage disequilibrium	210
	from genotype frequencies	319
10.5	Burrows's estimator of linkage disequilibrium	320
10.6	Multi-locus disequilibrium	326
10.7	Estimation of selective values for two loci by Turner's method	332
10.8	Multiple locus estimation of selective values in general	340
11	Selection on quantitative variables	342
11.1	Quantitative genetics	342
11.2	The effects of direct selection on a character	344
11.3	Correlated characters	345
11.4	Natural selection	346
11.5	Fitness functions	346
11.6	Nonparametric tests for natural selection	348 349
11.7	A regression model allowing for random genetic drift	354 354
11.8	Lande's models for long-term evolution	359
11.9	Multivariate extensions to Lande's models	360
11.10	Selection in marginal populations	300
12	Further analyses using genetic data	362
12.1	Associations between blood groups and diseases	362
12.2	Selection on an age-structured population	366
12.3	The index of opportunity for selection	372
12.4	Admixture studies	375
12.5	Other tests on many loci	377
12.6	The molecular clock hypothesis	381
13	Non-random mating and sexual selection	383
13.1	Introduction	383
13.2	Male or female choice experiments	385
13.3	Multiple choice experiments	389
13.4	Data from natural populations	394
13.5	O'Donald's models for sexual selection	397

	Contents	хi
14	Concluding remarks	399
14.1	Difficulties in interpreting evidence for selection	399
14.2	Difficulties in taking large enough samples	399
14.3	Simulation models	400
	Statistical appendix	401
A .1	The statistics of quantitative variation	401
A .2	The statistics of polymorphic variation	402
A .3	The method of maximum likelihood	404
A.4	Chi-square likelihood ratio tests	407
A.5	Taylor series approximations for biases, variances and covariances	408
A .6	Weighted means with minimum variance	409
A .7	Multiple linear regression	411
A.8	Weighted regression	413
A .9	Generalized least squares	414
A.10	The computer program GLIM	415
A .11	Fitting the proportional hazards model to data	418
A .12	A computer program for a randomization test on poly-	
	morphic data	420
A .13	A computer program for Mantel's test	424
A.14	A computer program for Borowsky's test	428
A .15	Fisher's method for combining independent test results	432
A .16	The computer program MAXLIK: General	433
A .17	The computer program MAXLIK: FREQ subroutine (a)	441
A.18	The computer program MAXLIK: FREQ subroutine (b)	445
A.19	A computer program for the Ewens-Watterson test	448
	References	451
	Name Index	477
	Subject Index	481