Contents

1.4.2

Preface XIII

List of Contributors XV

1	Carbon Dioxide Reduction and Uses as a Chemical Feedstock 1
	Michele Aresta
1.1	Introduction 1
1.2	Properties of the CO ₂ Molecule 3
1.2.1	Molecular Geometry 3
1.2.2	Spectroscopic Properties 3
1.2.2.1	Vibrational 3
1.2.2.2	UV-Vis 4
1.2.2.3	¹³ C-Nuclear Magnetic Resonance (NMR) 4
1.2.3	Energy Data and Reaction Kinetics Relevant to CO ₂ Conversion 5
1.3	CO ₂ Coordination to Metal Centers and Reactivity of Coordinated
	CO ₂ 6
1.3.1	Modes of Coordination 6
1.3.2	Interaction of CO2 with Metal Atoms at Low Temperature: Stability
	of the Adducts 8
1.3.3	Reactivity of CO ₂ Coordinated to Transition Metal Systems 8
1.4	CO ₂ Conversion 9
1.4.1	Carboxylation Reactions 10
1.4.1.1	C–C Bond Formation 10
1.4.1.1.1	Natural Processes 11
1.4.1.1.2	Artificial Processes 12
1.4.1.2	N-C Bond Formation 16
1.4.1.3	O-C Bond Formation 18
1.4.1.3.1	Cyclic Carbonates 18
1.4.1.3.2	Linear Carbonates 22
1.4.1.4	Use of Urea as an Active-CO ₂ Form 26
1.4.1.5	Transesterification Reactions 27

Reduction Reactions 28

1.4.2.1	Energetics of the Reactions 28
1.4.2.1.1	ZO ZO
1.4.2.1.2	
1.4.2.1.3	Photoelectrochemical Reduction 33
1.5	Conclusions 34
	References 35
2	Nitrogen Monoxide and Nitrous Oxide Binding and Reduction 43 Dong-Heon Lee, Biplab Mondal, and Kenneth D. Karlin
2.1	Introduction 43
2.2	NO 44
2.2.1	Bonding and Structures of Metal Nitrosyls 44
2.2.1.1	Heme Proteins: Guanylate Cyclase – NO Binding
	and Trans-bond Labilization 47
2.2.1.2	Bridging $(\eta^1 - \mu_2)$ Complexes 49
2.2.1.3	η ¹ -μ ₃ -NO Bridging Complexes 49
2.2.1.4	η ² -NO Bridging Complexes 50
2.2.1.5	Isonitrosyl and Side-on η^2 -NO Complexes 50
2.2.1.6	Side-on η^2 -NO Copper Protein Structures 51
2.2.1.7	Spectroscopic Features of Nitrosyl Metal Complexes 53
2.2.2	Chemical Reduction of NO and Related Chemistry 53
2.2.2.1	Chemical Reduction of Metal-bound NO 53
2.2.2.1.1	Metal-NO Reduction Accompanied by N-O Cleavage 56
2.2.2.2	Electrophilic Attack on Metal-bound NO: HNO (Nitroxyl)
	Complexes 58
2.2.2.3	Electrocatalytic Reduction of NO 60
2.2.2.4	Biological NO Reduction: NORs 61
2.2.2.4.1	Bacterial NORs of the Heme Copper Oxidase (HCO) Type 61
2.2.2.4.2	Models for NORs 63
2.2.2.4.3	Fungal P450-type NORs 63
2.2.2.4.4	Flavorubredoxins as Scavenging (S)-NORs 64
2.2.2.5	Metal Complex-mediated NO Disproportionation 65
2.3	$N_2O = 00$
2.3.1	Structure and Bonding 66
2.3.2	Metal-mediated N ₂ O Reduction 68
2.3.2.1	Oxo Transfer Reactions 68
2.3.2.2	Catalytic Oxo Transfer 70
2.3.2.3 2.3,2.4	N ₂ O N-N Bond Cleavage 70
2.3.2.4	Electrocatalytic Reduction of N ₂ O to N ₂ 71
2.3.2.3	Biological N ₂ O Reduction 72
4.7	Summary and Conclusions 73 References 74

3	Bio-organometallic Approaches to Nitrogen Fixation Chemistry 81 Jonas C. Peters and Mark P. Mehn
3.1	Introduction - The N ₂ Fixation Challenge 81
3.2	Biological N ₂ Reduction 83
3.2.1	General Comments 83
3.2.2	Structural Data 84
3.2.3	Assigning the FeMoco Oxidation States 85
3.3	Biomimetic Systems that Model Structure and Function 86
3.3.1	General Comments 86
3.3.2	Mononuclear Molybdenum Systems of Biomimetic Interest 86
3.3.2.1	The Originally Proposed "Chatt Cycle" 87
3.3.2.2	An Electrocatalytic Reduction Cycle using Low-valent Tungsten 89
3.3.2.3	A Mo(III)-mediated Catalytic N ₂ Reduction System 90
3.3.2.4	A $Cp*MMe_3(N_2)$ Model System (M = Mo, W) 92
3.3.2.5	Bimetallic Molybdenum Systems that Cleave N ₂ 93
3.3.2.6	Sulfur-supported Mo-N ₂ Complexes 95
3.3.3	Considering Mechanisms Involving Multiple and Single Iron Sites
	for N ₂ Reduction 96
3.3.3.1	General Comments 96
3.3.3.2	Theoretical Studies that Invoke Iron-mediated Mechanisms 96
3.3.3.2.1	Comparing Several Proposed Mechanisms 97
3.3.3.3	Synthetic Efforts to Model N ₂ Reduction by Multiple Iron Sites 103
3.3.3.4	Nitrogenase-related Transformations at Cluster Models 104
3.3.3.5	Considering N ₂ Fixation Involving a Scheme Single Iron Site 107
3.3.3.6	Model Studies that May be Relevant to N ₂ Fixation Involving a Single Iron Site 108
3.3.3.6.1	Fe(0)-N ₂ Complexes and NH ₃ versus N ₂ H ₄ Production 108
3.3.3.6.2	Low-coordinate Iron Model Systems 109
3.4	Concluding Remarks 115
	References 116
ŀ	The Activation of Dihydrogen 121
	Jesse W. Tye and Michael B. Hall
.1	Introduction 121
.1.1	Why Activate H ₂ ? 121
1.2	Why is it so Difficult to Activate H_2 ? 122
2	Structure and Bonding of Metal-bound H-Atoms 124
.2.1	Why can Metal Centers React Directly with H ₂ , while most Nonmetals Cannot? 124
.2.2	Seminal Work: The Discovery of Metal-bound H ₂ Complexes 125
.2.3	What are the Possible Consequences when H ₂ Approaches a Coordinatively Unsaturated Transition Metal Center? 126
.2.4	Elongated η^2 -H ₂ Complexes 128
.2.5	Experimental Gauges of the H–H Interaction and Degree
	of Activation 129

VIII	Contents	
·	4.2.5.1	Neutron Diffraction 129
	4.2.5.2	¹ H NMR Studies: HD Coupling 130
	4.2.5.3	H NMR Studies: Proton Polynation Time (T.)
	4.2.5.4	IR and Raman Spectral Chadian (III III)
	4.3	Intramolecular H-Atom Exchange 131
	4.3.1	Rotation of η^2 -H ₂ Ligands 132
	4.3.2	H ₂ /H ⁻ Exchange 134
	4.3.3	Hydride-Hydride Exchange 135
	4.4	Nonclassical H-Bonds 136
	4.4.1	Hydride Ligands as Noncleagiert LLD 14
	4.4.2	η^2 -H ₂ as a Nonclassical H-Bond Donor 136
	4.5	Reactivity of Metal-bound H-Atoms 137
	4.5.1	How Does the Reactivity of Metal-bound H-atoms Compare
		to that of Free H ₂ ? 137
	4.5.2	Metal-Monohydride Species –
		"Hydride Ligands can be Acidic!" 138
	4.5.3	Increased Acidity of η^2 -H ₂ 139
	4.5.4	Seminal Work: Intramalandary III.
4	4.6	Recent Advances in the Activation of Dihydrogen
		by Synthetic Complexes 141
	4.6.1	H ₂ Uptake by a Pt-Re Cluster 141
	1.6.2	H ₂ Binding to Ir ^{III} Initiates Conversion of CF ₂ to CO 142
	1.6.3	Encapsulation of H_2 in C_{60} 142
	1.6.4	Conversion of Biomass to H ₂ 142
	1.6.5	First Group 5 η^2 -H ₂ Complex 142
4	1.7	Enzymatically Catalyzed Dihydrogen Oxidation
4	7 1	and Proton Reduction 142
	.7.1 .7.1.1	General Information about H ₂ ase Enzymes 143
	.7.1.1	[NiFe]H ₂ ase 143
	.7.1.2	[FeFe]H ₂ ase 145
	.7.2.1	H ₂ Production by N ₂ ase 148
	.7.2.2	General Information about N ₂ ase Enzymes 148
	.8	Molybdenum-Iron-containing N ₂ ase 149 Conclusions 149
		A -1 1 1
		Acknowledgments 150 Abbreviations 150
		References 150
5		Molecular Oxygen Binding and Activation: Oxidation Catalysis 159
-	1	Currate N. Cornell and Matthew S. Sigman
5.		Introduction 159
5.		Additive Coreductants 161
		Aldehydes 161
	2.2	Coupled Catalytic Systems 165
Э.,	2.2.1	Organic Cocatalysts 166

5.2.2.2	Metal Cocatalysts 166
5.2.2.2.1	Copper 166
5.2.2.2.2	Multicomponent Coupled Catalytic Cycles 169
5.3	Ligand-modified Catalysis 170
5.3.1	Porphyrin Catalysis 171
5.3.2	Schiff Bases 172
5.3.2.1	Industrial Considerations 175
5.3.3	Nitrogen-based Ligands 176
5.3.4	Other Ligand Systems 180
5.3.4.1	N-Heterocyclic Carbenes (NHCs) 180
5.3.4.2	Polyoxometalates (POM) 180
5.4	Conclusions and Outlook 182 References 183
6	Dioxygen Binding and Activation: Reactive Intermediates 187
	Andrew S. Borovik, Paul J. Zinn and Matthew K. Zart
6.1	Introduction 187
6.1.1	An Example: Cytochromes P450 188
6.1.1.1	Mechanism 188
6.1.1.2	The Role of the Secondary Coordination Sphere in Catalysis 190
6.1.2	Effective O ₂ Binders and Activators in Biology 191
6.1.2.1	Accessibility 191
6.1.2.2	Secondary Coordination Sphere 191
6.1.2.3	Flow of Electrons and Protons 192
6.1.2.4	Lessons from Nature 192
6.2	Dioxygen Binders 192
6.2.1	Respiratory Proteins 192
6.2.1.1	Hemoglobins 192
6.2.1.2	Hemerythrin 193
6.2.1.3	Hemocyanins 194
6.2.2	Synthetic Analogs 194
6.2.2.1	Hemoglobin Models 195
6.2.2.2	Hemerythrin Models 196
6.2.2.3	Synthetic μ-Peroxo Diiron Complexes 197
6.2.2.4	Structurally Characterized μ -Peroxo Diiron Complexes 198
6.2.2.5	Monomeric Nonheme Iron–Dioxygen Adducts 200
6.2.2.6	Models for Hemocyanin 202
6.2.2.7	Monomeric Copper-Dioxygen Adducts 204
6.3	Reactive Intermediates: Iron and Copper Species 207
6.3.1	Reactive Species with Fe-oxo Motifs 208
6.3.1.1	Reactive Species from Monomeric Heme Iron–Dioxygen
	Complexes 208
6.3.1.2	Reactive Species from Monomeric Nonheme Iron–Dioxygen
	Complexes 209
6.3.1.3	Reactive Intermediates: Nonheme Fe(IV)-oxo Species 212

X Content	s
6.3.2	Reactive Iron and Course I
6.3.2.1	Reactive Intermediates with M(μ-O) ₂ M Motifs 215
6.3.2.2	Reactive Intermediates with $Cu(III)(\mu-O)_2Cu(III)$ Motifs 215 Reactive Intermediates with $Cu_3(\mu-O)_2$ Motifs 217
6.3.2.3	Reactive Intermediates with E. (a) E. a. a.
6.4	Cobalt–Dioxygen Complexes 221
6.4.1	Coholt 2 Di
6.4.2	Dinuclear Cabellana and a
6.5	Manganese–Dioxygen Complexes 225
6.6	Nickel-Dioxygen Complexes and Thoir Donation I.
6.7	Summary 229
	Acknowledgments 229
	References 229
7	Methane Functionalization 235
	Brian Conley William L. Town III. Kr. and L. Land
	Brian Conley, William J. Tenn, III, Kenneth J. H. Young, Somesh Ganesh,
	Steve Meier, Jonas Oxgaard, Jason Gonzales, William A. Goddard, III, and Roy A. Periana
7.1	Methane as a Replacement for D
7.2	Low Temperature is Key to Economical Methane
	Functionalization 237
7.2.1	Lower Temperature Leads to Lower Costs 237
7.2.2	Methane Functionalization by CH Hydroxylation 220
7.2.3	Methane as the Least Expensive Reductant on the Planet 220
7.2.4	Selectivity is the key to Methane Functionalization
	by CH Hydroxylation 240
7.2.5	Requirements of Methane Functionalization Chemistry Influenced
726	-/ - Mill Design 241
7.2.6	Strategy for Methane Hydroxylation Catalyst Design 244
7.3	CIT Activation as a Pathway to Economical Methans
7.3.1	runctionalization via CH Hydroxylation 245
7.3.1	CH Activation is a Selective, Coordination Reaction 245
7.5.2	Comparison of CH Activation to Other Alkane Coordination Reactions 248
7.3.3	reactions 248
, ,,,,,	Some Key Challenges and Approaches to Designing Hydroxylation
7.3.3.1	Dusca on the CH Activation Reaction 252
7.3.3.2	Stable Catalyst Motifs for CH Activation 254
7.3.3.2.1	Slow Rates of CH Activation-based Catalysts 257
7.3.3.2.2	Catalyst Inhibition by Ground State Stabilization 257 Use of Acidic Solvente to Mr.
	Use of Acidic Solvents to Minimize Catalyst Inhibition by Ground State Destabilization 260
7.3.3.2.3	Catalyst Modifications that Military
	Catalyst Modifications that Minimize Catalyst Inhibition by Ground State Stabilization 264
7.3.3.2.4	Heterolytic CH Activation with Floring 11 200
7.3.3.3	Heterolytic CH Activation with Electron-rich Metal Complexes 267 Coupling CH Activation with Functionalization 270
7.3.3.3.1	Functionalization by Formal C-O Reductive Eliminations 270

/.3.3.3.2	Functionalization by Oxidative Insertion 2/3
7.3.3.3.3	Functionalization by O-Atom Insertion 276
7.4	Conclusions and Perspective for Methane Functionalization 282
	References 283
8	Water Activation: Catalytic Hydrolysis 287
	Lisa M. Berreau
8.1	Introduction 287
8.1.1	Water Activation 287
8.1.2	Catalytic Hydrolysis 287
8.2	Water Activation: Coordination Sphere Effects on M-OH ₂ Acidity and Structure 288
8.2.1	Primary Coordination Environment 288
8.2.2	Secondary H-Bonding 293
8.2.3	Intramolecular H-Bonding and Mononuclear Zn-OH
o. 2. 3	Stabilization 297
8.2.4	Structural Effects Derived from M-OH ₂ Acting as an Intramolecular H-Bond Donor to a Bound Phosphate Ester 298
8.2.5	Ligand Effects on the pK_a of a Metal-bound Water in Co(III)
0.2.5	and Fe(III) Complexes 299
8.2.6	Acidity and Water Exchange Properties of Organometallic Aqua
0.2.0	Ions 300
8.3	Secondary H-Bonding Effects on Substrate Coordination, Activation
0.5	and Catalytic Hydrolysis Involving Phosphate Esters 302
8.3.1	H-Bonding and Phosphate Ester Coordination to a Metal
0.5.1	Center 302
8.3.2	H-Bonding and Stochiometric and Catalytic Phosphate Ester
0.5.2	Hydrolysis 304
8.4	Summary and Future Directions 312
0.1	References 314
	References 317
9	Carbon Monoxide as a Chemical Feedstock:
	Carbonylation Catalysis 319
	Piet W. N. M. van Leeuwen and Zoraida Freixa
9.1	Introduction 319
9.1.1	Heterogeneous Processes 319
9.1.2	Homogeneous Catalysts 321
9.2	Rhodium-catalyzed Hydroformylation 322
9.2.1	Introduction 322
9.2.2	CO as the Ligand 323
9.2.3	Phosphites as Ligands 324
9.2.4	Arylphosphines as Ligands 328
9.2.4.1	Monophosphines 328
9.2.4.2	Diphosphines 329
9.2.4.2.1	1-Alkenes 333

XII	Contents	
	9.2.4.2.2	2-Alkenes 335
	9.2.4.2.3	Mechanistic Studies 336
	9.2.5	Alkylphosphines as Ligands 337
	9.2.5.1	Monophosphines 337
	9.2.5.2	Dirhodium Tetraphosphine 338
	9.3	Methanol Carbonylation 339
	9.3.1	Introduction 339
	9.3.2	Mechanism and Side-reactions of the Monsanto Process 340
	9.3.3	Oxidative Addition of MeI to Rhodium -
		The Rate-limiting Step 342
	9.3.4	Ligand Design 344
	9.3.5	Trans-diphosphines in Methanol Carbonylation -
		Dinuclear Systems? 347
	9.3.6	Iridium Catalysts 349
•	9.4	Concluding Remarks 351
		References 351

Subject Index 357