Contents

Website resources		x		Global energy transfers 30	
Preface to the third edition		xiii		Local and regional energy transfers 32	
Acl	Acknowledgements			Applications: renewable energy from the environment 33	
Pa	rt one FUNDAMENTALS				
			Par	t two ATMOSPHERE	
1	THE PHYSICAL ENVIRONMENT:				
	INTRODUCTORY IDEAS AND CONCEPTS	3	3	HEAT AND ENERGY IN THE ATMOSPHERE	39
	Upper Wharfedale, North Yorkshire:			The atmospheric energy system 39	
	an environmental system 3			Human impact: ozone 41	
	Upper Wharfedale viewed as a system 8			Spatial variability of radiation exchanges 44	
	Evolutionary and equilibrium approaches			Key concepts: the greenhouse effect 45	
	to environmental systems 10			Latitudinal radiation balance 46	
	Modern approaches in physical geography 12			New developments: measuring radiation from	
	The rise of Earth System Science 14			space 46	
	Conclusion 15			Heat balance 47	
				Energy transfers and the global circulation 51	
2	ENERGY AND EARTH	18		Effects upon temperature 51	
	The planetary setting 18			Conclusion 54	
	New developments: the sun, our nearest				
	star 19		4	MOISTURE IN THE ATMOSPHERE	56
	Concepts of energy 19			The effects of heating and cooling in the	
	Key concepts: heat and temperature 21			atmosphere 56	
	General patterns and principles of electro-			Condensation 58	
	magnetic radiation 22			Systems: cloud types 62	
	Exogenetic energy 25			Precipitation 65	
	Endogenetic energy 28			New developments: cloud seeding 67	
	Energy outputs of the globe 28			Human impact: thunderstorms 68	
	Key concepts: the laws of thermodynamics 30			Conclusion 72	

5	PRECIPITATION AND EVAPO-		9 CLIMATE CHANGE	161
	TRANSPIRATION	73	Evidence for climatic change 162	
	Precipitation 73		Concepts: dating 165	
	Human impact: acid rain 75		New developments: sudden climate	
	New developments: measuring precipitation		changes 168	
	from space 81		Causes of climatic change 170	
	Human impact: drought 85		Future climates 176	
	Applications: floods 88		Key concepts: implications of global	
	Evapotranspiration 90		warming 177	
	Conclusion 98		Conclusion 178	
6	THE ATMOSPHERE IN MOTION	100		
	Atmospheric circulation and winds 100		Part three GEOSPHERE	
	Forces acting upon the air 102		10 EARTH'S GEOLOGICAL STRUCTURE AND	
	The global pattern of circulation 105 Energy transfer in the atmosphere 106		PROCESSES	183
	Wind patterns 108		Origin and dynamics 183	
	Applications: general circulation models 111		New developments: Earth-crossing objects and	
	Human impact: jet streams 116		deep impacts 186	
	New developments: El Niño-Southern		Earth structure and internal energy 186	
	Oscillation 118		Systems: planetary material and energy	
	Conclusion 120		systems 188	
			Crustal evolution: plate tectonics 189	
7	WEATHER-FORMING SYSTEMS	121	Key processes: sea-floor spreading 190	
	Air masses 121		Human impact: seismic studies and	
	Weather-forming systems of temperate		seismo-volcanic hazards 197	
	latitudes 124		The geological evolution of Britain 204	
	Concepts: air streams 125		Conclusion 204	
	Human impact: storms 130		Applications: morphotectonic landscapes in	
	Weather-forming systems of the tropics 134		Britain 205	
	Weather prediction 136			
	Weather prediction and hazards 138		11 THE GLOBAL OCEAN	209
	New developments: Atlantic tropical cyclone		Evolution of Earth's ocean basins 209	
	prediction model 139		Key processes: the birth of the Atlantic	
	Human impact: tornadoes 140		Ocean 211	
	MICRO AND LOCAL CLIMATES	141	Ocean basin geometry and sea levels 214	
8	The climate near the ground 141	141	Composition and structure of ocean waters 215	
	Urban climates 149		Applications: Late Quaternary isostatic crustal	
	New developments: urban heat island		adjustments 216 Systems: oceans and global environmental	
	modelling 151		change 218	
	The microclimate of slopes 153		Ocean circulation 219	
	Applications: human comfort and		Tides and waves 220	
	bioclimatology 154		New developments: ocean-atmosphere coupling	
	Applications: vineyard microclimate 156		and climate in western Europe 221	
	Local winds 157		Human impact: economic activity and	
			ocean-atmosphere interactions 225	
			active opinere interactions 223	

Conclusion 225

ROCK FORMATION AND DEFORMATION	227		Key concepts: thermodynamic character of	
Systems: the rock cycle 228			glaciers 317	
Rock-forming minerals and processes 228			Ice flow and glacier geomorphic processes 319	
Key processes: igneous rocks 230			Applications: deformation of the glacier bed 323	
The rock cycle (1) igneous processes and land-			Glacier erosional landsystems 328	
systems 232			New developments: the stability of ice	
Human impact: volcanic hazards 236			shelves 329	
The rock cycle (2) metamorphic processes and			Glacier depositional landsystems 333	
landsystems 237			Permafrost processes and landsystems 335	
The rock cycle (3) sedimentary processes and landsystems 238			Human impact: glacier resources and hazards 339	
The rock cycle (4) ocean environment 244			Conclusion 340	
Applications: geological resources 247			5 (No. 10 S. 10)	
Rock deformation: folding and faulting 248		16	THE WORK OF THE WIND	342
New developments: super volcanoes 251		-0	Aeolian processes 342	J-12
Conclusion 252			New developments: storminess and global	
Conclusion 232			climatic change 343	
DENUDATION, WEATHERING AND MASS			Key processes: deflation and entrainment 344	
WASTING	254		Aeolian landsystems 345	
Denudation 254	-		Systems: climate, tectonics and deserts 346	
Systems: geomorphic systems 255			Desert landsystems 347	
Force and resistance 257			Applications: the environmental significance of	
Weathering 260			loess sheets 348	
New developments: denudation, climate change			Conclusion 352	
and feedbacks 263			Human impact: medieval storms and coastal	
Mass wasting 266			dunes 353	
Applications: karst landsystems 266				
Key concepts: Mohr-Coulomb failure		17	THE WORK OF THE SEA	355
criteria 269			Wave, current and tidal action 355	
Human impact: debris flow hazard and			Key processes: wave form and action 357	
structural damage 276			Coastal geomorphic processes 359	
Conclusion 278			Applications: Holocene development of the	
			British coastline 360	
FLOWING WATER AT THE LAND SURFACE	281		Human impact: coastal management and	
Generation of channel flow 281			sea-level rise 363	
Systems: catchment and watershed models 283			Coastal landsystems 365	
Human impact: floods and flood control 291			The global coastline 369	
Stream flow in channels 293			Systems: tectonics, climate and sea levels 371	
Key processes: channel hydraulics 295			New developments: managed retreat 375	
Channel erosion and sediment transfer 299			Conclusion 376	
New developments: urban development on flood plains 299				
Fluvial landsystems 302		Pai	t four BIOSPHERE	
Conclusion 308				
Applications: river terraces and environmental		18	SOIL PROPERTIES	381
change 309			Physical properties 381	
-			Colloidal properties 387	
ICE AT THE LAND SURFACE	311		pH or soil reaction 393	
Form, mass and energy balance of ice 311			New developments: carbon sequestration in	

soils 394

Systems: glacier mass balance 314

	Soil fertility 396 Conclusion 397		23	DIVERSITY AND STABILITY IN ECOSYSTEMS Diversity 463	462
19	SOIL FORMATION Soil development, soil profiles and soil	398		Systems: theory of island biogeography 468 Stability 470	
	horizons 398			Relationship between diversity and stability 473	
	The soil-forming environment 400			Threats to global biodiversity 475	
	Leaching, decalcification, calcification 404 Podzolization 405			Conclusion 477	
	Clay formation and translocation 407				
	Gleying 409		Par	t five ENVIRONMENTS	
	Salinization, alkalization, solodization 411				
	Laterization 413		24	POLAR ENVIRONMENTS	481
	The soil catena: the topographical factor in soil			Distribution of polar landscapes 481	
	formation 415			Vegetation and soils in high latitudes 483	
	Human impact: soil erosion: the human			Energy and ecological productivity 485	
	degradation of soil profiles 416			New developments: polar climates, global	
	Conclusion 417			warming and polar ice sheets 489 Construction problems 491	
20	VEGETATION SYSTEMS	419		Impact of oil and gas fields 493	
	Units and scale of study 419			Arctic pollution 496	
	The concept of the ecosystem 420			Environmental impacts of polar tourism 498	
	Environmental factors 420			Conclusion 499	
	Limiting factors and range of tolerance 422				
	The concept of the ecological niche 423		25	MOUNTAIN ENVIRONMENTS	500
	Vegetation zones of Earth 423			Physical geology of Earth's principal	
	Key concepts: climatic diagrams of vegetation			mountain systems 500	
	regions 424			Key concepts: the character of mountains 501	
	Conclusion 426			Mountain meteorology and climate 506	
				Applications: environmental problems in	
21	VEGETATION DEVELOPMENT AND			mountain areas 507	
	SUCCESSION	427		Human impact: living at altitude 514	
	Succession and climax 427			Mountain ecosystems 514	
	Classification of successions 429			Alpine landsystem 516	
	Ecosystem changes through succession 436			New developments: climate change and alpine	
	Theories of climax vegetation 437			environments 517	
	Key concepts: colonization of the British Isles by			Conclusion 522	
	vegetation in postglacial times 439		•		
	Conclusion 440		26		524
	ENERGY ELONG AND MUTDIENT OVOLEG			Climate, present and past 524	
22		440		Soil formation and distribution 527	
	IN ECOSYSTEMS General principles of energy flow 442	442		Development and adaptation of vegetation 530	
	Ecosystem production 449			Distribution of the plant communities 534	
	Plant nutrients 450			Fire in the Mediterranean landscape 536	
	Human impact: human modifications of nutrient			Desertification and soil erosion 538	
	cycles 458 Conclusion 460			Water supply problems: quantity and quality 539	
				Human impact: badlands 540	

Conclusion 544

			CUNTEN	
27	DRYLAND ENVIRONMENTS	546	Soils 568	
	Climate 546		Forests 568	
	Docout E40		Human impacts defendetation in Bussil 572	

Desert Human impact: deforestation in Brazii - 5/3 Savanna 551 Human impact: Hurricane Mitch 576 New developments: plant types 553 Conclusion 579 Environmental problems of dry lands 553 Human impact: atmospheric dust and its impact 562 Appendix Soil classification according to the Conclusion 563 FAO-UNESCO Soil Map of the World 581 Glossary 583 **HUMID TROPICAL ENVIRONMENTS** 565 Bibliography 614 621 Climate 565 Index

Geomorphology

567