Table of Contents

Preface					
1	Intr	Introduction			
	1.1	Background and Motivation	3		
	1.2	Objective	5		
	1.3	Design Philosophy and Criteria	6		
	1.4	Definitions of Fundamental Concepts	10		
		1.4.1 Structure of a Solid	10		
		1.4.2 Observation Scale	11		
		1.4.3 Constitutive Relations	11		
		1.4.4 Material Properties	13		
		1.4.5 Damage and Disorder	19		
	1.5	Characteristic Lengths	22		
	1.0	Analytical Models	25		
	1.7	29			
2	Stat	tatistical Models			
	2.1	Introduction	33		
		2.1.1 Disorder	34		
		2.1.2 Discrete Models	36		
	2.2	Failure Criteria	41		
		2.2.1 Static Criteria of Rupture	42		
		2.2.2 Kinetic Criteria of Rupture	47		
	2.3	Parallel Bar Model	55		
		2.3.1 Brittle Loose Bundle Model	56		
		2.3.2 Elasto-Plastic Loose Bundle Model	85		
		2.3.3 Elastic Loose Bundle Slack Model	89		
		2.3.4 Annealed Loose Bundle Model	93		
		2.3.5 Tight Bundle Parallel Bar Model	97		
		2.3.6 Hierarchical Parallel Bar Models	99		
	2.4	Lattices	103		
		2.4.1 Percolation Lattices	107		
		2.4.2 Annealed Models	130		
		2.4.3 Scaling Law for Lattice Stiffness	133		
		2.4.4 Stress Driven Rupture of Lattices	137		

		2.4.5	Lattices for Compressive Loads	151		
	2.5	Strengtl	h of Diluted Networks	158		
		2.5.1	Distribution of Extremes	160		
		2.5.2	Parallel Bar Model with a Local Load Sharing Rule	166		
		2.5.3	Series Connection of Parallel Bar Models with a Local			
			Load Sharing Rule	170		
		2.5.4	Strength of a Lattice near the Percolation Limit	171		
	2.6	Brittle t	to Quasi-Brittle Transition	172		
	2.7	Experimental Results				
	2.8	Applica	ation of Discrete Models	187		
		2.8.1	Application of Lattice as a Discretization	188		
		2.8.2	Application of a Lattice as a Rigorous Discretization	191		
	2.9	Summa	ary and Conclusions	216		
3	Mic	romech	nanical Models	221		
	31	Introdu	action	221		
	5.1	311	Acquisition of Test Data	223		
		31.2	Correlation Functions	227		
		3.1.3	Representative Volume Element	230		
	32	Therm	odynamical Considerations	233		
	2.12	3.2.1	Thermodynamics of an Elastic Plate that Contains a			
			Single Crack	236		
		3.2.2	Stability of Crack Growth	240		
	3.3	Relatio	ons Between Average Stress and Strain Fields	246		
	3.4	Effective Properties of an Elastic Solid Which Contains a Single				
			Penny Shaped Crack	252		
	3.5	Effecti	ive Properties of a Damaged Elastic Solid: Dilute			
			Concentration Limit	258		
		3.5.1	Simplest Effective Continua Models	262		
		3.5.2	Effective Properties of an Elastic Solid Which Contains			
			an Ensemble of Penny Shaped Microcracks	268		
		3.5.3	Effective Properties of Two-Dimensional Elastic Solids			
			Which Contain an Ensemble of Rectilinear Slits	279		
		3.5.4	Effective Properties of a Two-Dimensional Elastic Solid			
			Which Contains an Ensemble of Rectilinear Slits:			
			Interactive Models	292		
		3.5.5	Effective Properties of a Two-Dimensional Elastic Solid			
			Which Contains and Ensemble of Elliptical Voids	300		
		3.5.6	Effective Properties of a Two-Dimensional Elastic Solid			
			Which Contains and Ensemble of Polygonal Voids	308		
		3.5.7	Summary of Effective Continuum Theories	310		
	3.6	Effect	ive Properties of a Damaged Elastic Solid: Elastic			
			Percolation Limit	312		

		3.6.1	Introduction to the Continuum Percolation	316
		3.6.2	Non-Overlapping Defects	319
		3.6.3	Overlapping Defects	323
		3.6.4	Approximate Determination of the Excluded Area	330
		3.6.5	Scaling Laws	343
		3.6.6	Summary of Percolation Models	350
	3.7	Effecti	ve Properties of a Damaged Elastic Solid: Cross-Over	
			Regime	355
	3.8	Process	s Models	362
		3.8.1	Uniaxial Tension - An Approximate Model	365
		3.8.2	Uniaxial Compression - Porous Rocks	374
		3.8.3	Polycrystalline Solids	382
		3.8.4	Macrocrack-Microcrack Interaction	403
	3.9	Summa	ary of Micromechanical Models	408
	3.10	Conclu	sions	410
		3.10.1	Analyses of Thermodynamic State	410
		3.10.2	Analyses of the Change of the Thermodynamic State	412
4	Con	tinuun	n Models	415
	4.1	Introdu	iction	415
	4.2	Microc	rack Distribution	424
		4.2.1	Fabric Tensor and Microcrack Distribution	424
		4.2.2	Effective Stiffness Tensor	446
		4.3.3	Percolation Threshold	450
	4.3	Damag	e Variable	453
	4.4. Scalar Models		Models	456
		4.4.1	Time-Independent Processes	457
		4.4.2	Time-Dependent Deformation Processes	474
		4.4.3	Cyclic Loading of Brittle Structures	484
	4.5	Rate Th	heory of Brittle Deformation Processes	485
		4.5.1	Introduction	485
		4.5.2	Projection Operators	487
		4.5.3	Thermodynamics of the Brittle Deformation Process	491
		4.5.4	Damage Potentials	496
		4.5.5	Damage Function and Surface	499
		4.5.6	Rate Form of Constitutive Equations	502
		4.5.7	Identification of the Material Parameters	504
		4.5.8	Illustrative Example - Uniaxial State of Stress	506
		4.5.9	Summary and Conclusions	515
	4.6	Brittle-	Ductile Deformation Processes -	
			A Finite Strain Rate Theory	516
		4.6.1	Introduction	516
		4.6.2	Preliminary Considerations	519

		4.6.3	Anisotropic Elastic Response	525		
		4.6.4	Elastic Response - Rate Type Model	532		
		4.6.5	Partition of Stress and Strain Rates	534		
		4.6.6	Damage. Plastic Stress and Strain Rates	535		
		4.6.7	Thermodynamic Considerations	541		
		4.6.8	Damage Potentials and Evolution Equations for the			
			Elastic Compliance and Stiffness Tensors	547		
		4.6.9	Constitutive Equations for the Inelastic Stress and			
			Strain Rates	553		
		4.6.10	Summary and Current Practice	561		
	4.7	Failure	Modes	576		
		4.7.1	Interpretation of Test Data	576		
		4.7.2	Intrinsic (Material) Failure Modes	589		
	4.8	Summa	ary and Conclusions	599		
5	Sun	mary	and Conclusions	603		
	5.1	Therm	odynamic State	604		
	5.2	Change	e of Thermodynamic State	607		
	5.3	Conclu	usions	611		
Appendices		617				
	App	endix A -	Percolation Theory	617		
	Арр	endix B -	Percolation Threshold	632		
		B .1	General Considerations	632		
		B.2	Mean Field Estimates of the Percolation Threshold	636		
	App	endix C -	Multifractal Formalism	650		
	Appendix D - Self-Similarity and Scaling Laws					
	App	endix E -	Hooke's Law and Material Symmetries	673		
	App	endix F -	Molecular Dynamics	679		
		F.1	Mechanical Energy of a System of Interacting Particles	680		
		F.2	Equations of Motion	682		
		F.3	Phase-Space Trajectories	682		
Re	efere	nced Li	iterature	687		
Aι	ithor	's Inde	×x	739		
Su	Subject Index					

Subject Index