Contents

1	Introduction	
	1.1 The current status of chemistry and the environment	
	1.2 Evolution of the environmental movement	2
	1.2.1 Public awareness	2
	1.2.2 'Dilution is the solution to pollution'	6
	1.2.3 Waste treatment and abatement through	
	command and control	6
	1.2.4 Pollution prevention	7
	1.2.5 Green chemistry	8
	1.3 The role of chemists	ć
2	What is green chemistry?	11
	2.1 Definition	11
	2.2 Why is this new area of chemistry getting so much attention?	12
	2.3 Why should chemists pursue the goals of green	
	chemistry?	13
	2.4 The root of innovation	16
	2.5 Limitations/obstacles	16
3	Tools of green chemistry	21
	3.1 Alternative feedstocks/starting materials	21
	3.2 Alternative reagents	24
	3.3 Alternative solvents	24
	3.4 Alternative product/target molecule	25
	3.5 Process analytical chemistry	26
	3.6 Alternative catalysts	27
4	Principles of green chemistry	29
	4.1 It is better to prevent waste than to treat or clean up	
	waste after it is formed	29
	4.2 Synthetic methods should be designed to maximize	
	the incorporation of all materials used in the process	
	into the final product	33

	4.2.1 Rearrangements	34
	4.2.2 Addition	34
	4.2.3 Substitution	34
	4.2.4 Elimination	34
4.3	Wherever practicable, synthetic methodologies should be	
	designed to use and generate substances that possess	
	little or no toxicity to human health and the environment	34
4.4	Chemical products should be designed to preserve	
	efficacy of function while reducing toxicity	36
	4.4.1 What is designing safer chemicals?	36
	4.4.2 Why is this now possible?	37
4.5	The use of auxiliary substances (e.g. solvents,	
	separation agents) should be made unnecessary	
	wherever possible and innocuous when used	38
	4.5.1 The general use of auxiliary substances	38
	4.5.2 Concerns for solvents	38
	4.5.3 Environment	39
	4.5.4 Supercritical fluids	40
	4.5.5 Solventless	41
	4.5.6 Aqueous	41
	4.5.7 Immobilized	41
4.6	Energy requirements should be recognized for their	
	environmental and economic impacts and should be	
	minimized	42
	4.6.1 Energy usage by the chemical industry	42
	4.6.2 How energy is used	43
	4.6.3 The need to accelerate reactions with heat	43
	4.6.4 The need to control reactivity through cooling	43
	4.6.5 Separation energy requirements	44
	4.6.6 Microwaves	44
	4.6.7 Sonic	44
	4.6.8 Optimizing the reaction should mean minimizing	
	the energy requirements	44
4.7	A raw material or feedstock should be renewable	
	rather than depleting, wherever technically and	
	economically practicable	45
	4.7.1 What are renewable vs. depleting feedstocks?	45
	4.7.2 Sustainability	46
	4.7.3 Direct environmental effects	46
	4.7.4 Indirect environmental effects	46
	4.7.5 Limited supply creates economic pressure	47
	4.7.6 The political effects of petroleum	47
	4.7.7 Concerns about biological feedstocks	48

	4.8 Unnecessary derivatization (blocking group, protection/ deprotection, temporary modification of physical/chemical	
	processes) should be avoided whenever possible	48
	4.8.1 The prevalence of this practice in chemistry	48
	4.8.2 Blocking/protecting groups	49
	4.8.3 Making salts, etc. for ease of processing	49
	4.8.4 Adding a functional group only to replace it	49
	4.9 Catalytic reagents (as selective as possible) are superior	,,,
	to stoichiometric reagents	50
	4.10 Chemical products should be designed so that at the	-
	end of their function they do not persist in the environment	
	and break down into innocuous degradation products	51
	4.10.1 The current situation	51
	4.10.2 Persistence in the environment	52
	4.11 Analytical methodologies need to be further developed	
	to allow for real-time, in-process monitoring, and control	
	prior to the formation of hazardous substances	53
	4.12 Substances and the form of a substance used in	
	a chemical process should be chosen so as to	
	minimize the potential for chemical accidents, including	
	releases, explosions, and fires	54
5	Evaluating the effects of chemistry 5.1 How does a chemist evaluate a chemical product or	57
	process for its effect on human health and the environment?	57
	5.1.1 Toxicity to humans	58
	5.1.2 Toxicity to wildlife	61
	5.1.3 Effects on the local environment	63
	5.1.4 Global environmental effects	63
	3.1.4 Global Givilorimonial checks	uo
6	Evaluating feedstocks and starting materials	67
	6.1 Origins of the feedstock/starting materials	67
	6.2 A renewable or a depleting resource	68
	6.3 Hazardous or innocuous feedstock	69
	6.4 Downstream implications of the choice of feedstock	69
_		_
1	Evaluating reaction types	71
	7.1 What are the different general types of chemical	٦.
	transformation?	71
	7.1.1 Rearrangements	72
	7.1.2 Addition reactions	73
	7.1.3 Substitution reactions	75
	7.1.4 Elimination reactions	77

x Green Chemistry: Theory and Practice

	 7.1.5 Pericyclic reactions 7.1.6 Oxidation/reduction reactions 7.2 What is the intrinsic nature of the various reaction types? 7.2.1 Do they require additional chemicals? 7.2.2 Do they necessarily generate waste? 	78 80 81 81
8	Evaluation of methods to design safer chemicals 8.1 Mechanism of action analysis 8.2 Structure activity relationships 8.3 Avoidance of toxic functional groups 8.4 Minimizing bioavailability	85 86 88 88
	8.5 Minimizing auxiliary substances	90
9	Examples of green chemistry 9.1 Examples of green starting materials 9.1.1 Polysaccharide polymers 9.1.2 Commodity chemicals from glucose	93 93 93 94
	9.1.3 Biomass conversion to chemical products	95
	9.2 Examples of green reactions	97
	9.2.1 Atom economy and homogeneous catalysis	97
	9.2.2 Halide-free syntheses of aromatic amines	97
	9.2.3 A green alternative to the Strecker synthesis	98
	9.3 Examples of green reagents	100
	9.3.1 Non-phosgene isocyanate synthesis	100
	9.3.2 Selective methylations using dimethylcarbonate 9.3.3 Solid-state polymerization of amorphous	101
	polymers using diphenylcarbonate	102
	9.3.4 Green oxidative transition metal complexes	103
	9.3.5 Liquid oxidation reactor	103
	9.4 Examples of green solvents and reaction conditions	103
	9.4.1 Supercritical fluids	104
	9.4.2 Aqueous reaction conditions	106
	9.4.3 Immobilized solvents	107
	9.4.4 Irradiative reaction conditions	108
	9.5 Examples of green chemical products	109
	9.5.1 Design of alternative nitriles	110
	9.5.2 Rohm and Haas Sea-Nine(tm) product	111
	9.5.3 Rohm and Haas CONFIRM(tm) insecticide	111
	9.5.4 Donlar's polyaspartic acids	112
	9.5.5 Polaroid's complexed developers	112
10	Future trends in green chemistry	115
	10.1 Oxidation reagents and catalysts	115
	10.2 Biomimetic, multifunctional reagents	116

10.3 Combinatorial green chemistry	117	
10.4 Chemistry that both prevents problems and solves		
current pollution problems	117	
10.5 Proliferation of solventless reactions	118	
10.6 Energy focus	118	
10.7 Non-covalent derivatization	119	
Exercises	121	
References		
Index	131	

Contents xi