Table of Contents

1	ENVIRONMENTAL TRANSPORT MODELING	1
1.1	INTRODUCTION	1
2	PRELIMINARIES	5
2.1 2.1.	EQUILIBRIUM BETWEEN ENVIRONMENTAL PHASES	
2.1.		6
2.2	DIFFUSION AND THE DIFFUSION COEFFICIENT	9
2.2.	 Diffusion in free phases Effective diffusion coefficient in a porous medium 	9
2.3	ADVECTION AND THE SURFACE MASS TRANSFER COEFFICIENT	. 11
	1 Laminar flow boundary layer theory and turbulent flow mass transfer	
2.3.	2 Penetration theory MASS BALANCE AND TRANSPORT EQUATIONS	. 12
	ERENCES	
3	DIFFUSION IN A SEMI-INFINITE SYSTEM	. 17
3.1	INTRODUCTION	. 17
	ANALYSIS SUMMARY	. 17
	Case 1: Semi-infinite region with uniform initial concentration and zero concentration at the surface	. 17
	2 Case 2: Semi-infinite region with uniform initial concentration and mass transfer or reaction at the surface	. 18
3.2.	3 Case 3: Semi-infinite region with uniform initial concentration capped by a finite layer with a different uniform initial concentration, and zero concentration at the surface	. 20
3.2.	surface, and first-order decay	. 21
3.2.	surface, and first-order decay	. 22
	6 Case 6: Semi-infinite region with uniform initial concentration capped by a finite layer with a different uniform initial concentration, zero concentration at the surface, and first-order decay	
	NUMERICAL EVALUATION	
3.4.		
3.4.2	2 Principle of superposition	. 29
3.4.	3 Variable transformation for first-order decay	
	DIFFUSION IN A FINITE LAYER	
	INTRODUCTION	
	INTRODUCTION Analysis summary	
4.2.	Case 1: Finite layer with arbitrary initial concentrations, zero concentration at the surface, and zero flux at the base	
4.2.2		
4.2.	3 Case 3: Finite layer with arbitrary initial concentrations, mass transfer or reaction at the surface, and zero flux at the base	
4.2.4	4 Case 4: Finite layer with uniform initial concentration, mass transfer or reaction at the surface. and zero flux at the base	
4.2.:		

Contaminant Transport in Soils and Sediments

4.2.6	Case 6: Finite layer with uniform initial concentration, zero surface concentration, zero flux at the base, and first-order decay	20
4.2.7	Case 7: Finite layer with arbitrary initial concentrations, mass transfer or reaction at the surface,	. 37
4.2.7	zero flux at the base, and first-order decay	40
4.2.8	Case 8: Finite layer with uniform initial concentration, mass transfer or reaction at the surface,	. 40
1.2.0	zero flux at the base, and first-order decay	41
43 N	UMERICAL EVALUATION	
431	Evaluation of the initial condition integral	. 42 47
	Cases 1 and 2: zero surface concentration	
	Cases 3 and 4: surface mass transfer	
	Determining transcendental function roots.	
	EVELOPMENT	
4.4.1		
4.4.2	•	
	Solution to the spatial problem	
	Variable transformation for first-order decay	
	RENCES	
5 D	IFFUSION IN A TWO-LAYER COMPOSITE SYSTEM	. 53
5 1 IN	ITRODUCTION	53
	NALYSIS SUMMARY	
5.2.1		
	System eigenfunctions and eigenvalues	
5.2.3		
0.210	surface, and zero flux at the base	56
5.2.4	Case 2: Two-layer finite system with arbitrary initial concentrations, mass transfer or reaction at	
	the surface, and zero flux at the base	. 58
5.3 N	UMERICAL EVALUATION	
5.3.1		
5.3.2	Surface flux calculation	
5.3.3	Range of significance for eigenvalues	
5.3.4	Determination of eigenvalues in range	
5.3.5	Eigenfunction evaluation	
5.3.6	Normalization integral evaluation	
5.3.7	Initialization integral evaluation	. 65
	EVELOPMENT	
5.4.1	Separation of variables	
5.4.2	Solution to the temporal problem	
5.4.3	Solution to the spatial problem	
5.4.4	Initial conditions	
5.4.5		
REFER	ENCES	. 75
< D	IFFUSION IN A THREE-LAYER COMPOSITE SYSTEM	
6 D	IFFUSION IN A THREE-LAYER COMPOSITE SYSTEM	• / /
6.1 IN	TRODUCTION	. 77
6.2 A	NALYSIS SUMMARY	. 77
6.2.1	System dynamics and general solution for a three-layer composite	. 7 7
6.2.2	System eigenfunctions and eigenvalues	. 79
6.2.3	Case 1: Three-layer finite system with arbitrary initial concentrations, zero concentration at the	
	surface, and zero flux at the base	. 81
6.2.4	Case 2: Three-layer finite system with arbitrary initial concentrations, mass transfer or reaction	
	at the surface, and zero flux at the base	
6.3 N	UMERICAL EVALUATION	. 87
6.3.1	Concentration calculation	
6.3.2	Surface flux calculation	
6.3.3	Range of significance for eigenvalues	. 89

6.3.4	Determination of eigenvalues in range	90
6.3.5	Eigenfunction evaluation	92
6.3.6	Normalization integral evaluation	92
6.3.7	Initialization integral evaluation	92
6.3.8	General numerical evaluation comments	93
6.4 D	EVELOPMENT	
6.4.1	Separation of variables	
6.4.2	Solution to the temporal problem	
6.4.3	Solution to the spatial problem	. 94
6.4.4	Initial conditions	104
6.4.5	Variable transformation for first-order decay	106
	RENCES	
7 A	DVECTION-DIFFUSION MODELS	109
7.1 IN	ITRODUCTION	109
	NALYSIS SUMMARY	
	Case 1: Semi-infinite region with uniform initial concentration with a constant concentration	
	boundary condition	109
7.2.2	Case 2: Semi-infinite region with uniform initial concentration with a constant flux boundary	107
	condition	110
7.2.3	Case 3: Semi-infinite region with uniform initial concentration with a boundary condition given	
	by a finite-timed pulse at a constant concentration	110
7.2.4	Case 4: Semi-infinite region with uniform initial concentration with a boundary condition given	
1.2.1	by a finite-timed pulse at a constant flux	111
7.2.5	Case 5: Semi-infinite region with uniform initial concentration capped by a finite region of a	
,	different uniform initial condition, with a constant concentration boundary condition	111
7.2.6	Case 6: Semi-infinite region with uniform initial concentration capped by a finite region of a	• • •
1.2.0	different uniform initial condition, with a constant flux boundary condition	112
7.2.7	Case 7: Semi-infinite region with uniform initial concentration capped by a finite region of a	
1.2.1	different uniform initial condition, with a boundary condition given by a finite-timed pulse at a	
	constant concentration	113
7.2.8	Case 8: Semi-infinite region with uniform initial concentration capped by a finite region of a	112
1.2.0	different uniform initial condition, with a boundary condition given by a finite-timed pulse at a	
	constant flux	113
7 7 N	UMERICAL EVALUATION	115
7.3 N	UMERICAL EVALUATION	114
	EVELOPMENT	
8 V	OLATILE LIQUID EVAPORATION	119
8 1 IN	ITRODUCTION	119
87 A	NALYSIS SUMMARY	119
8.2.1	Case 1: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid	112
ا. ش. 0	saturation, with zero vapor concentration at the surface	119
877	Case 2: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid	,
0.2.2	saturation, with a vapor mass transfer boundary condition at the surface	120
8.2.3	Case 3: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid	120
0.2.3	saturation below a finite clean capped region, with zero vapor concentration at the surface	121
0 7 1	Case 4: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid	1 _ 1
8.2.4	saturation below a finite clean capped region, with a vapor mass transfer boundary condition at	
	saturation below a finite clean capped region, with a vapor mass transfer boundary condition at the surface	177
0	the surface	122
0.3 N 0.1 F	UMERICAL EVALUATION	120
	EVELOPMENT	143
8.4.1	Case 1: Evaporation and vapor concentration at the surface	1
	saturation, with zero vapor concentration at the surface	122

Contaminant Transport in Soils and Sediments

8.4.2	2 Case 2: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation, with a vapor mass transfer boundary condition at the surface	174			
8.4.3	· · ·	124			
01.10	saturation below a finite clean capped region, with zero vapor concentration at the surface	125			
8.4.4					
	saturation below a finite clean capped region, with a vapor mass transfer boundary condition at				
	the surface	125			
REFE	IPFERENCES				
9	DIFFUSION WITH TIME-DEPENDENT PARTITION COEFFICIENTS	127			
9.1	INTRODUCTION	127			
	MATHEMATICAL ANALYSIS				
	ANALYSIS SUMMARY	129			
9.3.1	Case 1: Diffusion in a thin layer with time-dependent soil-air partition coefficient, zero surface				
	concentration, a no-flow bottom boundary condition, and constant initial conditions	129			
9.3.2	Case 2: Diffusion time-dependent partition coefficient, zero surface concentration, no flow				
0.2.2	bottom boundary, and arbitrary initial conditions Case 3: Diffusion in a thin surface boundary layer with time-dependent soil-air partition	133			
9.3.3	coefficient, zero surface concentration, a constant concentration source at the lower boundary,				
	and constant initial conditions	134			
94	VARIABLE TRANSFORMATIONS ON A VARIETY OF TIME-DEPENDENT AIR-SOIL PARTITION COEFFICIENT				
	FUNCTIONS				
	Constant soil-air partition coefficient				
9.4.2	Linear soil-air partition coefficient	140			
9.4.3	Exponential soil-air partition coefficient	141			
9.5 I	DEVELOPMENT				
9.5.1					
9.5.2					
9.5.3	····· F ···· - · · · · · · · · · · ·				
REFE	RENCES	148			
10 0	CONSTANT FLUX LIQUID EVAPORATION				
10.1	INTRODUCTION	149			
10.2	ANALYSIS AND DEVELOPMENT				
REFE	RENCES	151			
APP	ENDIX	153			
	ERROR FUNCTION				
	_APLACE TRANSFORMATION				
	ROOTS OF TRANSCENDENTAL EQUATIONS				
	PREDICTING THE DIFFUSION COEFFICIENT IN VAPORS				
	PREDICTING THE DIFFUSION COEFFICIENT IN LIQUIDS				
F. 5	SAMPLE CALCULATIONS OF MODELS USING MATHCAD [™]	165			