Contents

Preface	<i>page</i> xi
Preface to the Second Edition	xiii
ONE. Plate Tectonics	1
1–1 Introduction	1
1–2 The Lithosphere	5
1–3 Accreting Plate Boundaries	6
1–4 Subduction	9
1–5 Transform Faults	13
1–6 Hotspots and Mantle Plumes	14
1–7 Continents	17
1–8 Paleomagnetism and the Motion of the Plates	22
1–9 Triple Junctions	35
1–10 The Wilson Cycle	38
1–11 Continental Collisions	41
1–12 Volcanism and Heat Flow	46
1-13 Seismicity and the State of Stress in the Lithosphere	49
1–14 The Driving Mechanism	54
1–15 Comparative Planetology	55
1–16 The Moon	56
1–17 Mercury	58
1–18 Mars	59
1–19 Phobos and Deimos	64
1–20 Venus	65
1–21 The Galilean Satellites	67
TWO. Stress and Strain in Solids	73
2–1 Introduction	73
2–2 Body Forces and Surface Forces	73
2-3 Stress in Two Dimensions	80
2-4 Stress in Three Dimensions	83
2-5 Pressures in the Deep Interiors of Planets	84

vi **CONTENTS**

2–6 Stress Measurement	85
2–7 Basic Ideas about Strain	87
2–8 Strain Measurements	94
THREE. Elasticity and Flexure	105
3-1 Introduction	105
3–2 Linear Elasticity	106
3–3 Uniaxial Stress	106
3–4 Uniaxial Strain	108
3–5 Plane Stress	109
3–6 Plane Strain	111
3–7 Pure Shear and Simple Shear	111
3–8 Isotropic Stress	112
3–9 Two-Dimensional Bending or Flexure of Plates	112
3-10 Bending of Plates under Applied Moments and Vertical Loads	116
3-11 Buckling of a Plate under a Horizontal Load	118
3-12 Deformation of Strata Overlying an Igneous Intrusion	119
3-13 Application to the Earth's Lithosphere	121
3–14 Periodic Loading	122
3-15 Stability of the Earth's Lithosphere under an End Load	123
3-16 Bending of the Elastic Lithosphere under the Loads	
of Island Chains	124
3–17 Bending of the Elastic Lithosphere at an Ocean Trench	127
3-18 Flexure and the Structure of Sedimentary Basins	129
FOUR. Heat Transfer	132
4-1 Introduction	132
4–2 Fourier's Law of Heat Conduction	132
4–3 Measuring the Earth's Surface Heat Flux	133
4–4 The Earth's Surface Heat Flow	135
4-5 Heat Generation by the Decay of Radioactive Elements	136
4-6 One-Dimensional Steady Heat Conduction with Volumetric	
Heat Production	138
4–7 A Conduction Temperature Profile for the Mantle	140
4–8 Continental Geotherms	141
4-9 Radial Heat Conduction in a Sphere or Spherical Shell	144
4–10 Temperatures in the Moon	145
4–11 Steady Two- and Three-Dimensional Heat Conduction	146
4–12 Subsurface Temperature Due to Periodic Surface Temperature	
and Topography	147
4-13 One-Dimensional, Time-Dependent Heat Conduction	149
4–14 Periodic Heating of a Semi-Infinite Half-Space: Diurnal	
and Seasonal Changes in Subsurface Temperature	150
4-15 Instantaneous Heating or Cooling of a Semi-Infinite Half-Space	153
4–16 Cooling of the Oceanic Lithosphere	157
4-17 Plate Cooling Model of the Lithosphere	161
4–18 The Stefan Problem	162

4–19 Solidification of a Dike or Sill	166
4–20 The Heat Conduction Equation in a Moving Medium:	
Thermal Effects of Erosion and Sedimentation	168
4–21 One-Dimensional, Unsteady Heat Conduction in an Infinite Region	169
4–22 Thermal Stresses	171
4–23 Ocean Floor Topography	174
4–24 Changes in Sea Level	178
4-25 Thermal and Subsidence History of Sedimentary Basins	179
4–26 Heating or Cooling a Semi-Infinite Half-Space by a Constant	
Surface Heat Flux	183
4-27 Frictional Heating on Faults: Island Arc Volcanism and Melting	
on the Surface of the Descending Slab	184
4-28 Mantle Geotherms and Adiabats	185
4-29 Thermal Structure of the Subducted Lithosphere	190
4-30 Culling Model for the Erosion and Deposition of Sediments	191
FIVE. Gravity	195
5–1 Introduction	195
5-2 Gravitational Acceleration External to the Rotationally	
Distorted Earth	195
5–3 Centrifugal Acceleration and the Acceleration of Gravity	200
5-4 The Gravitational Potential and the Geoid	201
5-5 Moments of Inertia	205
5-6 Surface Gravity Anomalies	207
5–7 Bouguer Gravity Formula	210
5-8 Reductions of Gravity Data	212
5–9 Compensation	213
5-10 The Gravity Field of a Periodic Mass Distribution on a Surface	213
5–11 Compensation Due to Lithospheric Flexure	214
5-12 Isostatic Geoid Anomalies	216
5–13 Compensation Models and Observed Geoid Anomalies	219
5-14 Forces Required to Maintain Topography and the Geoid	223
SIX. Fluid Mechanics	226
	226
6–1 Introduction 6–2 One-Dimensional Channel Flows	220
	220
6–3 Asthenospheric Counterflow	
6-4 Pipe Flow	231 233
6–5 Artesian Aquifer Flows	233 234
6–6 Flow Through Volcanic Pipes 6–7 Conservation of Fluid in Two Dimensions	
6–8 Elemental Force Balance in Two Dimensions	234 235
6–9 The Stream Function	233 237
	237
6-10 Postglacial Rebound	238 242
6-11 Angle of Subduction	242 244
6-12 Diapirism	244 249
6–13 Folding	249

6–14 Stokes Flow	254
6–15 Plume Heads and Tails	259
6–16 Pipe Flow with Heat Addition	262
6-17 Aquifer Model for Hot Springs	264
6–18 Thermal Convection	266
6-19 Linear Stability Analysis for the Onset of Thermal Convection	
in a Layer of Fluid Heated from Below	267
6–20 A Transient Boundary-Layer Theory for Finite-Amplitude	
Thermal Convection	272
6–21 A Steady-State Boundary-Layer Theory for Finite-Amplitude	
Thermal Convection	274
6–22 The Forces that Drive Plate Tectonics	280
6–23 Heating by Viscous Dissipation	283
6–24 Mantle Recycling and Mixing	285
CEVEN Pack Phenology	292
SEVEN. Rock Rheology	
7–1 Introduction	292
7–2 Elasticity	293
7–3 Diffusion Creep	300
7–4 Dislocation Creep	307
7–5 Shear Flows of Fluids with Temperature- and	211
Stress-Dependent Rheologies	311
7–6 Mantle Rheology	318
7–7 Rheological Effects on Mantle Convection	323 325
7–8 Mantle Convection and the Cooling of the Earth	323 327
7-9 Crustal Rheology	327
7-10 Viscoelasticity 7-11 Electic Perfectly Plastic Pohenics	329
7–11 Elastic-Perfectly Plastic Behavior	555
EIGHT. Faulting	339
8–1 Introduction	339
8–2 Classification of Faults	339
8–3 Friction on Faults	341
8–4 Anderson Theory of Faulting	343
8–5 Strength Envelope	347
8-6 Thrust Sheets and Gravity Sliding	347
8-7 Earthquakes	350
8–8 San Andreas Fault	355
8–9 North Anatolian Fault	359
8-10 Some Elastic Solutions for Strike-Slip Faulting	361
8–11 Stress Diffusion	367
8-12 Thermally Activated Creep on Faults	368
NINE. Flows in Porous Media	374
9–1 Introduction	374
9–2 Darcy's Law	374
9–3 Permeability Models	375
	270

9–4 Flow in Confined Aquifers	376
9–5 Flow in Unconfined Aquifers	378
9-6 Geometrical Form of Volcanoes	387
9-7 Equations of Conservation of Mass, Momentum, and Energy	
for Flow in Porous Media	390
9–8 One-Dimensional Advection of Heat in a Porous Medium	391
9–9 Thermal Convection in a Porous Layer	393
9–10 Thermal Plumes in Fluid-Saturated Porous Media	396
9–11 Porous Flow Model for Magma Migration	402
9–12 Two-Phase Convection	405
TEN. Chemical Geodynamics	410
10–1 Introduction	410
10–2 Radioactivity and Geochronology	411
10-3 Geochemical Reservoirs	415
10-4 A Two-Reservoir Model with Instantaneous	
Crustal Differentiation	417
10–5 Noble Gas Systems	423
10-6 Isotope Systematics of OIB	424
APPENDIX ONE. Symbols and Units	429
APPENDIX TWO. Physical Constants and Properties	433
Answers to Selected Problems	437
Index	441