CONTENTS

	face nowl	edgments	xii xvi
1	Old Spectroscopists Forget a Lot but They do Remember Their Lines Harold Kroto		
	1 2	Introduction Microwave Spectroscopy: A Fundamental Analysis	1
2		ntiers of Linear and Non-Linear Raman Spectroscopy -o Hamaguchi	13
	1 2 3	Ultrafast Chemical Exchange Dynamics of Reaction Intermediates Elucidated by Raman Band Shape Analysis 2.1 Ion association dynamics in aqueous solutions of magnesium sulfate 2.2 Protonation/deprotonation dynamics of N,N-dimethylacetamide in hydrochloric acid Time- and Space-Resolved Raman Spectroscopy of Single Living Yeast Cells 3.1 Time- and space-resolved Raman spectra of a dividing fission yeast cell [19] 3.2 Discovery of the "Raman spectroscopic signature of life" in the mitochondria of a living fission yeast cell [20,21] 3.3 Molecular level pursuit of a spontaneous death process of a starving budding yeast cell by time-resolved Raman mapping [22] Local Structures and Their Temporal Evolution in an Ethanol/Water Mixture Probed with CARS Signal Spatial Distribution Molecular Near-Field Effect in Resonance Hyper-Raman Scattering	144 155 166 202 23 25 26 28 33
3	Stru Higi	Introduction Experimental Techniques 2.1 VUV lasers 2.2 PFI-ZEKE photoelectron spectroscopy and Rydberg-state-resolved threshold-ionization spectroscopy VUV-millimeter wave double-resonance spectroscopy Hyperfine Structure of Rydberg States 3.1 Rare gas atoms: krypton and xenon	35 36 43 43 43 48 48

		3.2 MQDT calculations for rare gases	52			
		3.3 Ortho-hydrogen	56			
	4	Conclusion and Outlook	58			
ŧ		rational Potential Energy Surfaces in Electronic Excited States Laane	63			
	1	Introduction	64			
	2	Theory	67			
		2.1 The quartic potential energy	67			
		2.2 Calculation of energy levels	70			
		2.3 Kinetic energy functions	71			
	3	Experimental Methods	73			
	4	Electronic Ground State	77			
		4.1 One-dimensional potential functions	77			
		4.2 Two-dimensional potential energy functions	79			
	5	Electronic Excited States	84			
		5.1 Cyclic ketones	84			
		5.2 Stilbenes	97			
		5.3 Bicyclic aromatics	104			
	6	5.4 Cavity ringdown spectroscopy of enones	124			
	0	Summary and Conclusions	129			
5		Raman Spectroscopy in Art and Archaeology: A New Light on Historical				
	•	steries	133			
	How	vell G.M. Edwards				
	1	Introduction	134			
	2	Raman Spectroscopy	139			
	3	Case Studies	145			
		3.1 Biodeteriorated wall paintings	145			
		3.2 Roman wall paintings	149			
		3.3 Egyptian mummies	149			
		3.4 Tissues and resins	151			
		3.5 Textiles	159			
		3.6 Ivories	165			
	4	Conclusions	169			
5	Rea	l-Time Vibrational Spectroscopy and Ultrafast Structural Relaxation	175			
		ayoshi Kobayashi				
	1	Ultrashort Pulse Laser	176			
		1.1 Introduction	176			
		1.2 Group-velocity matching by noncollinear geometry	177			
		1.3 Pulse-front matching	178			
		1.4 Generation of sub-5 fs	181			
		1.5 Generation of sub-4-fs pulse	184			

	2	Ultrafast Spectroscopy	189
		2.1 Introduction	189
		2.2 Ultrafast dynamics in PDA	192
		2.3 Experimental	194
		2.4 Results and discussion	195
7		lications of Coherent Raman Spectroscopy try Pestov, Alexei V. Sokolov, and Marlan O. Scully	219
	1	Introduction	219
	2	FAST CARS	221
	3	Hybrid Technique for CARS	230
	4	Coherent versus Incoherent Raman Scattering	236
	5	Summary	238
8	Higi	h-Resolution Laboratory Terahertz Spectroscopy and Applications	
	to A	Astrophysics	241
	Step	ohan Schlemmer, Thomas Giesen, Frank Lewen, and Gisbert Winnewisser	
	1	Introduction	242
	2	High-Resolution Terahertz Spectrometers	244
		2.1 BWOs, powerful radiation sources for terahertz spectroscopy	247
		2.2 Schottky multipliers and their applications	248
		2.3 Superlattice multipliers and their applications	250
		2.4 Cologne sideband spectrometer for THz applications	252
	3	Future Trends in Terahertz Spectroscopy	254
		3.1 Supersonic jet-spectroscopy	254
		3.2 Spectroscopy in ion traps	256
	4	Conclusions	258
9		ective Detection of Proteins and Nucleic Acids with Biofunctionalized	267
		chlücker and W. Kiefer	,
	1	Introduction	268
	2	Protein Detection with SERS Labels	269
		2.1 Immunosandwich assay for protein detection employing silver films2.2 Enzyme immunosandwich assay for protein detection utilizing silver	271
		nanoparticles	271
		2.3 Immunosandwich assay for protein detection with Raman-	
		immunogold conjugates	273
		2.4 Protein detection with nanostructures prepared by seeded growth	
		of silver on gold	274
	3	Nucleic Acid Detection with SERS Labels	276
		3.1 Gene probe for DNA detection employing solid SERS substrates	276
		3.2 DNA detection by SERRS employing aggregated silver colloids	277
		3.3 DNA/RNA detection with nanostructures prepared by seeded growth	
		of silver on gold	279

	4	Encapsulation of SERS Labels	280
	•	4.1 Silica encapsulation of SERS labels	280
		4.2 Protein encapsulation of SERS labels	283
		4.3 Polymer encapsulation of SERS labels	283
	5	Microscopic Applications of SERS Labels	284
		5.1 Introduction to Raman microscopy with SERS labels	284
		5.2 SERS microscopy for protein localization	285
10	Sur	face-Enhanced Raman Scattering Spectroscopy	289
	Tam	itake Itoh, Athiyanathil Sujith, and Yukihiro Ozaki	
	1	Introduction	290
	2	Part I: Examination of Electromagnetic Mechanism of Surface-Enhanced	
		Raman Scattering	290
		2.1 Experiments	291
		2.2 Results and Discussion	294
	3	Part II: Biomedical Applications	300
		3.1 Cellular Probing	300
		3.2 Biological Imaging	305
		3.3 Pathogen detection 3.4 Conclusion	311 316
			316
11		ctroscopy and Broken Symmetry Bunker and Per Jensen	321
		,	
	1 2	Introduction The Symmetrization Postulate	322
	3	The Molecular Symmetry Group	323
	3	3.1 Nuclear spin and <i>ortho–para</i> interactions	325 326
		3.2 Missing levels	331
		3.3 Parity and chiral molecules	332
	4	Time Reversal Symmetry	336
	5	The Breakdown of the Symmetrization Postulate	338
	,	5.1 The breakdown of the Pauli exclusion principle	338
		5.2 The appearance of "missing" levels	339
	6	The Breakdown of Inversion Symmetry	340
	7	The Breakdown of Time Reversal Symmetry	341
12		adband Modulation of Light by Coherent Molecular Oscillations	347
	A.M	. Burzo and A.V. Sokolov	
	1	Introduction	347
	2	Molecular Modulation: Basic Principles	350
	3	Broadband Generation: Experimental Results	350
	4	Amplitude and Frequency Modulation at 90 THz	352
	5	Raman Generation in Gases with Several Input Fields	353
	6	Molecular Modulation in Waveguides	359
	7	Summary	363

13		eralized Two-Dimensional Correlation Spectroscopy Noda	367
	1	Introduction	368
	2	Generealized 2D Correlation Analysis	369
		2.1 Perturbation-induced dynamic spectra	369
		2.2 2D Correlation analysis of dynamic spectra	370
	3	Properties of 2D Correlation Spectra	372
	-	3.1 Synchronous spectra	372
		3.2 Asynchronous spectra	374
	4	Application Example	375
	5	Conclusions	380
14	Mic	rowave Spectroscopy	383
	Jens	-Uwe Grabow and Walther Caminati	
	1	Introduction	384
	2	Frequency-Domain (Frequency Scan/Continuous Wave) Techniques	385
		2.1 Continuous radiation microwave excitation on stationary gases	386
		2.2 Continuous radiation microwave excitation on supersonic expansions	394
	3	Time-Domain (Stationary Frequency/Impulse) Techniques	400
		3.1 Pulsed radiation microwave excitation of stationary gases	402
		3.2 MW-MW and MW-RF double resonance	407
		3.3 Pulsed radiation microwave excitation of supersonic jets	414
		3.4 External fields	425
	4	Time-Domain (Frequency Ramp/Chirp) Techniques	436
		4.1 Chirped radiation microwave excitation of supersonic jets	437
		4.2 Fast passage FT-MW apparatus	438
		4.3 MW-(MW, mm, sub-mm) and MW-(MW, mm, sub-mm)/(IR, VIS, UV) multiple resonance	447
		multiple resonance	447
15		rowave Spectroscopy	455
		ther Caminati and Jens-Uwe Grabow	
	1	Introduction	456
	2	General Aspects	457
		2.1 Conformational equilibria	459
		2.2 Tautomeric equilibria	460
		2.3 Large amplitude motions	461
		2.4 Chemical bond and nuclear quadrupole coupling: examples of	
	_	severe interaction	468
	3	Isolated Molecules	470
		3.1 Chemistry and MW spectroscopy: new molecular species and in situ preparation	
			470
			491
		3.0	494
		3.4 Nonpolar Molecules	498

		3.5 Polcyclic aromatic hydrocarbons and heterocycles	500
		3.6 Molecules of Astrophysical Interests	501
	4	Molecular Adducts	502
	7	4.1 Van der Waals Complexes	503
		4.2 Hydrogen-bonded Complexes	512
		4.3 Charge Transfer Complexes	522
		4.4 Molecular Recognition	525
		4.5 Molecular Aggregation	526
		4.6 Quantum solvation	531
16	Ran	nan Spectroscopy of Viruses and Viral Proteins	553
	Dan	iel Němeček and George J. Thomas, Jr.	
	1	Introduction	554
	2	Pathways of Virus Assembly	555
	3	Advantages of Raman Spectroscopy	557
	4	Experimental Raman Methods	558
	5	Analysis of Spectral Data	561
		5.1 General considerations	561
		5.2 The single-value decomposition approach	563
	6	General Characteristics of Viral Protein and Nucleic Acid Raman Spectra	565
		6.1 The protein Raman spectrum	567
		6.2 The nucleic acid Raman spectrum	570
	7	Applications in Structural Studies of Viruses	572
		7.1 Assembly and maturation of the bacteriophage P22 capsid	572
		7.2 The scaffolding protein of bacteriophage P22	576
		7.3 The portal of bacteriophage P22	576
		7.4 The terminase of bacteriophage P22	579
		7.5 The tailspike of bacteriophage P22	581
		7.6 Accessory proteins of the bacteriophage P22 portal/tail vertex	583
		7.7 Filamentous bacteriophages	583
		7.8 Assembly and maturation of the bacteriophage HK97 head	586
	8	Overview and Conclusions	590
17		rational Spectroscopy via Inelastic Neutron Scattering ce S. Hudson	597
	1	Introduction	F08
	2	Basic Scattering Theory	598
		Experimental Neutron Scattering	598
	3	3.1 Neutron sources	603
		3.2 Types of neutron scattering	603 603
		3.3 Vibrational inelastic scattering	
	4	Advantages of INS for Vibrational Spectroscopy	605 607
	4 5	Examples of INS Spectra and Their Utility	608
)	5.1 Hydrocarbons	608
		5.2 Short, strong, symmetric hydrogen bonds	613

18	Opt	timal Signal Processing in Cavity Ring-Down Spectroscopy	623
	Kev	in K. Lehmann and Haifeng Huang	
	1	Introduction	624
	2	The Model	625
	3	Generalized Least Squares Fit with Correlated Data	628
	4	Weight Matrix for Model of Cavity Ring-Down Data	630
	5	Detector Noise Limited Cavity Ring-Down Data	633
		5.1 To average and then fit, or fit each decay and average the fit results?	638
	6	Linearization of the Fit in Cavity Ring-Down Spectroscopy	638
	7	Determination of Ring-Down Rate by Fourier Transform Method	641
	8	The Successive Integration Method for Exponential Fitting	643
	9	Analog-Detected Cavity Ring-Down	646
		9.1 Phase shift method	646
		9.2 Gated integrator method	649
		9.3 Logarithm-differentiator method	650
	10	Shot Noise Limited Cavity Ring-Down Data	651
	11	Effect of Residual Mode Beating in the Ring-Down Decay	655
	12	Conclusions	657
19		ectroscopy and Dynamics of Neutrals and Ions by High-Resolution	
		rared–Vacuum Ultraviolet Photoionization and Photoelectron	
		thods	659
	Cne	ruk-Yiu Ng	
	1	Introduction	660
	2	IR-VUV Laser Photoion-Photoelectron Apparatus	663
	3	Experimental Measurements	665
		3.1 VUV-PIE and VUV-PFI-PE measurements	665
		3.2 IR-VUV-PI measurements	665
		3.3 IR-VUV-PFI-PE measurements	673
		3.4 IR-VUV-PIE and IR-VUV-PIE depletion measurements	680
		3.5 IR-VUV-PFI-PE depletion measurements	682
		3.6 VUV-IR-PIRI measurements	686
	4	Summary and Future Prospects	689
Ind	ex		693