Contents

Contributors	Xi
Acknowledgments	xiii
Prologue	XV

Chapter 1 Mechanics of Flood Basalt Magmatism

Peter Olson

Overview
Continental Flood Basalts, Oceanic Plateaus, and
Mantle Plumes
Constraints from Seismic Tomography and
Geochemistry
Time Variations in Hotspot Activity
Hotspot Activity and Geomagnetic Reversal
Frequency
Partial Melting in Thermal Plumes and Diapirs
The Numerical Model
Melting in Solitary Diapirs
Melting in Continuous Plumes
Conclusions
References

Chapter 2 Melt Migration and Related Attenuation in Equilibrated Partial Melts

Tye T. Gribb, Shanyong Zhang, and Reid F. Cooper

Overview	
Introduction and Theoretical Foundati	ion
Experimental Approach	
Experimental Specimens: Co-M	1g Olivine –
"Basalt"	-
Creep Experiments and Specime	en Analysis
Attenuation Experiments	
Experimental Results	
Flexural Creep Experiments	
Microstructural Analysis	
Attenuation Measurements	

Discussion	28
Creep and Melt Migration	28
Attenuation and Melt Migration	32
Application of the Experimental Observations	
to the Earth's Mantle	34
Summary and Conclusions	35
References	35

Chapter 3 Influence of Basaltic Melt on the Creep of Polycrystalline Olivine under Hydrous Conditions

David L. Kohlstedt and Prame N. Chopra

Overview	37
Introduction	38
Experimental Procedures	38
Deformation Results	41
Microstructural Observations	42
Hot-Pressed Material	42
Deformed Material	43
Infrared Analyses	49
Discussion	49
Microstructural Characteristics	-49
Rheological Behavior	50
Conclusions	52
References	52

Chapter 4 The Generation and Migration of Partial Melt beneath Oceanic Spreading

24 Centers

David W. Sparks and E. M. Parmentier

25	David W. Sparks and G. M. Farmender	
28	Overview	
28	Introduction	

1 2 2

3

4

4

19 20 22

23

24

25

viii Contents

Melt Migration by Porous Flow
The Forces That Drive Porous Flow
Decompacting Boundary Layers
Effect of Buoyant Mantle Upwelling on Melt
Generation and Migration
Three-Dimensional Buoyant Flow beneath an
Offset Spreading Center
Melt Migration beneath Spreading Centers
Implications for Crustal Thickness and
Gravity
Discussion
References

Chapter 5 Dike Patterns in Diapirs beneath Oceanic Ridges: The Oman Ophiolite

A. Nicolas, F. Boudier, and B. Ildefonse

	_
Overview	77
Introduction	77
Regions of Diapirism and Sub-ridge Flow	78
Dike Typology in Relation to Diapiric Areas	82
Dike Patterns in the Southeastern Oman Diapirs	85
Dikes in the Plastic Flow Reference Frame	89
Dikes in the Ridge Reference Frame	89
Discussion	91
Conclusions	94
References	94

Chapter 6 Neutral-Buoyancy Controlled Magma Transport and Storage in Mid-ocean Ridge Magma Reservoirs and Their Sheeted-Dike Complex: A Summary of Basic Relationships

Michael P. Ryan

Overview	97
Introduction	99
In Situ Density–Depth Relationships	99
Definitions	100
The Magma Reservoir Environment and the Region	
of Neutral Buoyancy	102
Structure of the Ridge Magma Reservoir in Relation	
to the Region of Neutral Buoyancy	105
Lithologic Associations in Ophiolite Complexes	110
Region of Negative Buoyancy	110
Region of Neutral Buoyancy	111
Differentiation and Melt Density	112
Icelandic and Hawaiian Analogs	118
Neutral-Buoyancy Control in Lateral Intrusion	
Dynamics: The Sheeted-Dike Complex	122
Notes on Hydrothermal Interactions	131
Summary Relationships and Evolution of the	
Oceanic Crust	133
Comments at Closure: A World without Neutral	
Buoyancy	134

Appendix	135 135
Chapter 7 An Observational and	
Theoretical Synthesis of Magma Chambe	er
Geometry and Crustal Genesis along a M	
	nu
ocean Ridge Spreading Center	
J. Phipps Morgan, A. Harding, J. Orcutt, G. Kent, and Y. J. Chen	
Overview	139
Introduction	140
The Seismic Record: Seismic Constraints on	
Magma Emplacement and Crustal Accretion at a	
Fast-Spreading Ridge Axis	142
Northern East Pacific Rise	143
Correlation between Seismic and Ophiolite	
Observations of Crustal Structure	143
Current Seismic Picture of an Oceanic Magma	
Chamber at a Fast-Spreading Ridge	145
Other Seismic Constraints on Crustal	
Accretion at a Fast-Spreading Ridge	151
Delivery of Melt from the Mantle to Supply	1.0.4
the Magma Lens	154
Spreading Rate Dependence of the Magma	154
Lens: Seismic and Gravity Constraints Closure on Observational Constraints on the	154
Structure of an Axial Magma Chamber	158
	158
A Theoretical Model for Crustal Genesis	158
Magma Ascent and Emplacement	158
Hydrothermal Cooling	162
Model Formulation	164
Numerical Determination of Accumulated	
Crustal Strain	165
Model Results	166
Neutral Buoyancy versus Magma Freezing as	
a Fundamental Limit to Magma Ascent	172
Geochemical Variability between Ridge	
Segments	173
Closure	173
References	175

Chapter 8 Deep Structure of Island Arc Magmatic Regions as Inferred from Seismic Observations

Akira Hasegawa and Dapeng Zhao

Overview	179
Introduction	179
Three-Dimensional Seismic Velocity Structure	180
P-Wave Velocity Structure beneath the Northeastern	
Japan Arc	182
Three-Dimensional Seismic Attenuation Structure	185
Midcrustal Magma Bodies Detected by Reflected	
Seismic Waves	187
Deep Structure of Arc Volcanoes	191
References	193

Chapter 9 Lateral Water Transport across a Dynamic Mantle Wedge: A Model for Subduction Zone Magmatism

J. Huw Davies

Overview
Introduction
Thermal Model
Brief Review of Previous Thermal Models
Outline of Thermal Model
Induced Flow in the Mantle Wedge
Frictional Heating at the Slab-Wedge Interface
Ablation
Trench Migration
Theoretical Background and Numerical
Implementation
Results of Thermal Modeling
Implications of the Results
Adiabatic Upwelling
Phase Equilibria for Hydrous Peridotite
Basic Mechanism of Lateral Water Transport
Discussion of the Lateral Transport Mechanism
Transition from Silica-Rich Fluid to a
Hydrous Melt
Transport of Water-Dominated Fluid
Estimate of the Water Flux That Enters the
Mantle Wedge
Importance of Hydrous Minerals Other Than
Amphiboles
How Much Amphibole Is Formed?
How Much Free Water Is There?
Chemistry of Amphiboles
Model Predictions
Presence and Location of the Volcanic Front
Uncertainties in Geometric Predictions
Major Element Composition of Primary
Magmas
Slab Trace Element Signature
Other Predictions
Conclusions
References

Chapter 10 Buoyancy-Driven Fracture and Magma Transport through the Lithosphere: Models and Experiments Moritz Heimpel and Peter Olson

Overview	223
Introduction	224
Magma Fracture Models	224
Experiments on Buoyancy-Driven Fracture	225
Experimental Method and Results	225
Dimensional Analysis of Results	228
A New Model for the Crack Propagation	
Velocity	229
Shape of Fractures with Constant Fluid	
Volume	230
Shape of Fractures with Constant Fluid Flux	231

Application to Magma Transport	234
Fracture Properties of Country Rock	234
Melt Properties	236
Implications for Magma Ascent Velocities	236
Additional Processes	238
Summary	238
References	239

Chapter 11 Accumulation of Magma in

Space and Time by Crack Interaction ada

Akıra	1	la.	K٤

Overview	241
Introduction	242
Crack Interactions	243
Approach to Crack Interaction	243
Summary of Gelatin Experiments	244
Interaction of Two Collinear Cracks	245
Interaction of Two Parallel Offset Cracks	248
Conditions for Crack Coalescence	251
Applications to Magma Accumulation in Space and	
Time	252
Magma Accumulation	252
Variation of a Volcano	253
Conclusions	255
References	255

Chapter 12 Generalized Upper Mantle Thermal Structure of the Western United States and Its Relationship to Seismic Attenuation, Heat Flow, Partial Melt, and Magma Ascent and Emplacement

Hiroki Sato and Michael P. Ryan

Overview	259
	259
Laboratory Seismic Data for Mantle Peridotite	261
Seismic Velocity of Mantle Peridotite	261
Seismic Anelasticity of Mantle Peridotite	263
Generalized Thermal Structure beneath the Western	
United States from Seismic Anelasticity Data	265
Upper Mantle Anelasticity Structure	265
Volcanic Setting	266
Upper Mantle Temperature and Partial Melt	
Fraction	268
Comparison with Previous Temperature	
Estimates	272
Surface Heat Flow in the Western United	
States	273
Comparison with Heat Flow Temperature-	
Depth Profiles	274
Generalized Thermal Structure beneath the Western	
United States from Seismic Velocity Data	277
General Temperature Distributions	277
Regional Temperature Distributions	277
A Remark on Melt Retention and the Effective	
Melt Content of a Source Region	278

x Contents

Comparison with Heat Flow-Derived	
Temperatures	279
On Discontinuous Magma Ascent and the	
Mechanics of Basaltic Underplating	279
Inherently Discontinous Nature of the Ascent	
Path	280
Penetration of the Mantle-Crust Transition	
Zone by a Buoyancy-Driven Crack	281
Penetration of the Mantle-Crust Transition	
Zone by a Constant Fluid Pressure Crack	284
Penetration of a Material Transition Zone by a	
Fluid-Pressurized Crack with Differential	
Boundary Loading	284
Closing Discussion	285
References	286

Chapter 13 Aspects of Magma Generation and Ascent in Continental Lithosphere

George W. Bergantz and Ralph Dawes

Overview	291
Introduction	291
Melt Generation	294
Modeling the Physical Interaction of Basalt and	
Crust	297
Rheology of Suspensions	297
Numerical Model of Basaltic Underplating	299
Melt Collection and Ascent	306
Melt Convection in a Porous Medium	306
Compaction	307
Diapirism and Diking	308
Tectonic Regimes and Magma Ascent	309
References	312

Chapter 14 Two-Component Magma Transport and the Origin of Composite Intrusions and Lava Flows

Charles R. Carrigan

Overview	 319
Introduction	 320

Observations of Composite Flows, Dikes, and	
Conduits	321
Basalt and Rhyolite Systems	321
Rhyodacite and Rhyolite Systems	323
Models of the Origin of Mafic-to-Silicic Zoning	326
Sequential Magma Transport	326
Simultaneous Transport of Different Magma	
Types	327
Fluid Dynamics of the Simultaneous Flow of Two	
Magmatic Components	330
Polymer Coextrusion Experimental Analogues	331
Numerical Models of Encapsulation and Self-	
Lubrication	334
Analytical Modeling of Lubricated Magma	
Transport	336
A Rational Model for Magma Chamber Withdrawal	346
A Physical Model for the Contemporaneous	
Eruption of Three Domes in the Inyo Volcanic	
Chain, Long Valley, California	349
Summary and Conclusions	351
References	352

Chapter 15 Fluid and Thermal

Dissolution Instabilities in Magmatic Systems

J. A. Whitehead and Peter Kelemen

Subject Index

Overview	355
Introduction	356
Thermal Erosion	358
Transition of One-Dimensional Flows to	
Oscillations: An Experimental Study	358
Stability of Thermally Eroded Flows	362
Experiments with Paraffin	369
Magma Flow Instabilities from Chemical Corrosion	371
References	377
Author Index	381
Geographic Index	389

393