CONTENTS

PREFACE	•	•	• •	·	·	·	·	·	•	•	·	·	٠	·	VII
CHAPTER 1. INTRODUCTION															1
Composition of argillaceous sediments															2
Some fundamental fluid mechanics concepts															4
Fundamental equation of fluid statics													•	·	4
Buoyancy															5
Mechanics of compaction	·			÷.	·		·	Ċ		•	•	•	•	·	6
Laboratory and field data on compaction	•	•••	•	•	•	·	•	·	·	·	·	·	·	•	12
Diagenesis – metamorphism transition phase .	•	•••	•	•	•	•	·	•	·	•	•	•	·	•	15
Properties of argillaceous sediments as related t	to co	••••		•	•	•	•	•	•	•	•		·	•	17
Interstitial fluids													·	•	17
Experimental data on the chemistry of s	olut	· · ·	• •	1164	• dua	. to	•	mn	· acti		·	·	·	•	19
Subsidence															22
Abnormal fluid pressures															22
References															23
References	·	• •	•	·	•	•	·	•	·	•	•	·	•	·	21
CHAPTER 2. INTERRELATIONSHIPS AMON		NEN	CITV	ъ	ספו	GIT	ΓV	DL			INC	• M	010	,	
TURE CONTENT, PRESSURE AND DEPTH															31
															31
Introduction															
Density-depth-pressure relationships														•	31
Density variations of recent sediments as														·	35
Porosity-density relationship													•	·	39
Porosity-depth relationships													•	·	41
Porosity variations with depth													•	·	41
Effect of carbonate content on porosity														·	50
Experimental compaction of recent sediments,														•	52
Nature and degree of hydration of clays,													·	•	52
Hydration of clays	•		•	•	•	•	•	•	•	•	•	•	·		53
Hydration of silicic acid															56
Relationship between residual moisture	cont	ent a	and p	ress	ure	•	•	•	•	•	•	•	•		57
Relationship between pressure and poro															66
Moisture content versus time relationship	р														70
Calculation of compaction parameters	•														74
Effect of various electrolytes in interstit	ial w	ater	on co	mp	acti	on									77
References															83
CHAPTER 3. MECHANICS OF COMPACTION	I AN	ID C	OMP.	ACT	[0]	N M	IOI	DEL	.s						87
Introduction															87
Theory of consolidation															87
State of stress in compacting shales															92
Resolution of the total stress field .															94
Hydrostatic stress state, 95 – Deviatoric	• stre	• • • ss st:	ate 9	6	To	tal s	stre	ss t	ens	01.	97	•	-	•	
Variation of the overburdern stress .															98
Evaluation of the shear stresses due to an							•	·	•	•	•	•	•	•	20
Estimation of the magnitude and direction															101
esumation of the magnitude and directly	on o	i stro	2 38	•	•	•	•	·	•	•	·	·	•	•	101

Pressure-depth-density relationships	103 106
Differential compaction	115
Estimation of maximum effective pressure that has ever existed in an argillaceous sediment	118
References	120
CHAPTER 4. EFFECT OF COMPACTION ON SOME PROPERTIES OF ARGILLACEOUS	
SEDIMENTS	123
Introduction	123
Pore-size distribution in clays	124
Microstructural changes in argillaceous sediments undergoing compaction	127
X-ray diffraction techniques used in compaction studies	131
Crystal structural changes in clay minerals at different temperatures and at elevated pres-	
sures	133
Dickite (API no. 15), 134 - Halloysite (API no. 12), 134 - Hectorite (Stevensite) (API	
no. 34), 135 – Montmorillonite, 137 – Silica, 138	
Permeability	140
Specific storage	144
	144
Permeability of compacted clays	148
Relationship between permeability and porosity	153
Rheology of argillaceous sediments	
Rheological models	154
Elastic and strength properties of argillaceous sediments	158
Elastic properties of unconsolidated and indurated sediments	158
Elastic moduli, 161 – Modulus of elasticity (Young's modulus), 162 – Bulk modulus, 166	
- Rigidity, 167 - Poisson's ratio, 167 - Lamé constant, 168 - Effect of pore fluids on	
elastic properties, 168	
elastic properties, 168 Strength properties of argillaceous sediments	168
Strength properties of argillaceous sediments	168
Strength properties of argillaceous sediments	168 172
Strength properties of argillaceous sediments	172
Strength properties of argillaceous sediments	172 173
Strength properties of argillaceous sediments	172 173 174
Strength properties of argillaceous sediments	172 173
Strength properties of argillaceous sediments	172 173 174 179
Strength properties of argillaceous sediments	172 173 174 179 194
Strength properties of argillaceous sediments	172 173 174 179 194 198
Strength properties of argillaceous sediments	172 173 174 179 194
Strength properties of argillaceous sediments	172 173 174 179 194 198 198
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 205
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 205
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 205
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 205
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 205 210
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 205 210 219
Strength properties of argillaceous sediments	172 173 174 179 194 198 201 205 210 219 219
Strength properties of argillaceous sediments	172 173 174 179 194 198 198 201 205 210 219 219 220

Brief review of various processes affecting chemical composition of interstitial waters	. 225
Clay particle-fluid interface	. 227
Double-layer theory	. 229
Helmholtz double-layer model (rigid double layer), 229 – Gouy double-layer model	
(diffuse double layer), 229 - Stern double layer model (combination double layer), 231	
Electrodiagenesis	231
Role of gravity and temperature gradients in formation of fossil brines	232
	232
Semipermeable membrane, osmosis, and reverse osmosis	
Electrochemistry of semipermeable clay membranes, 234	233
Diagenetic clay mineral alteration	238
Chemical cementation	230
Effect of compaction on the chemistry of solutions squeezed out of clays and muds – experi-	237
mantel data and theoretical analysis	239
mental data and theoretical analysis	
Brief review of diagenetic changes of pore waters	258
Early diagenetic changes of pore waters	258
Late diagenetic changes in sediments	
Some chemical changes involving silicates	
Some variations in Ca/Mg ratio of interstitial waters	262
Influence of microorganisms on the chemical composition of underground waters	263
Hydrochemical facies and vertical variation in chemistry of interstitial fluids	
Salinity distribution in sandstones and associated shales	270
Squeezing of oil and bitumens out of muds and shales	272
Compaction as a possible cause of primary migration of oil	273
Temperature gradient as a driving force for migration of petroleum	274
Chemistry of oil-field water dissolved in crude oil	
Relationship of trace elements in crude oil and associated shales	
References	276
CHAPTER 6. SUBSIDENCE	283
	283
Origin of sedimentary basins and geosynclines	204
Subsidence as a result of fluid withdrawal	
Near-surface subsidence	296
Mathematical analyses of subsidence	296
Jacquin-Poulet computer model	297
Depth-time relationship, 300 – Flow of water in clay, 300	
References	303
CHAPTER 7. ABNORMAL GEOPRESSURES	305
Introduction	
Origin of abnormal geopressures	309
Compaction as a cause of abnormal formation pressures	311
Rapid loading and continuous sedimentation, 312	
Faulting as a cause of overpressured formations	320
Phase changes in minerals during compaction	322
Gypsum-anhydrite conversion, 322 – Clay-mineral dehydration and transformation, 324	
- Clay-mineral diagenesis, 326 - Creation and maintenance of abnormal pressures, 330	
Salt and shale diapirism	334
Osmotic and diffusion pressures	
Geothermal temperature changes	339
	ار د د

CONTENTS

Anatomy of an abnormal fluid pressure zone					3	343
	•	•	·	·		346
Calculation of abnormal pressures from well logs	•	•	•	٠		-
References	•	•	·	·	. 3	348
CHAPTER 8. EQUIPMENT AND TECHNIQUES USED IN COMPACTION STUI	DIES	5			. 3	353
Development of compaction equipment					. 3	353
Compaction studies prior to 1930					. 3	353
Development of equipment after 1930					. 3	357
Classification of compaction equipment					. 3	363
Consolidometers						365
Filter presses				·		370
Linear piston apparatuses				•		372
	·	·	·	•	• •	,, 2
High-pressure dual-piston compaction apparatuses, 379					-	
Triaxial and hydrostatic compaction apparatuses						382
Some salient features of calibrating uniaxial compaction apparatuses						387
Calibration of high-pressure linear piston devices	•	•	•	•		388
Calibration of very-high-pressure apparatuses				•	. 3	393
References	•	•	•	•	. 3	395
APPENDIX A. CONVERSION FACTORS				•	. 3	399
REFERENCES INDEX	•	•		•	. 4	403
SUBJECT INDEX	•	•	•		. 4	411