CONTENTS | CHAPTER 1 THE GEOLOGICAL FRAMEWORK OF CONTINENTAL RED BEDS | 1 | |--|--| | INTRODUCTION | 1 | | GEOSYNCLINES Pre-orogenic phase Pre-flysch Flysch Molasse | 2
4
4
6
6 | | PLATE TECTONICS AND SEDIMENTATION Divergent plate margins Intracontinental rifts and aulacogens Intercontinental rifting Convergent plate margins Forearc areas | 6
7
7
9
13
13 | | The magmatic arc Back-arc areas Transform faults Continental collision | 14
15
16
21 | | THE TECTONIC SETTING OF ANCIENT CONTINENTAL RED BEDS Introduction Proterozoic red beds of western Canada The Caledonian orogen Early Mesozoic red beds formed in graben associated with the opening of the Atlantic Ocean | 26
26
26
29
35 | | Cenozoic molasse The Alpine molasse The molasse of the Canadian cordillera | 39
40
44 | | THE CLIMATIC SETTING OF ANCIENT CONTINENTAL RED BEDS The significance of first-cycle arkosic red beds The significance of size-composition trends | 50
51
55 | | THE CLASSIFICATION OF ANCIENT CONTINENTAL RED BEDS Introduction and previous classifications Reddening and depositional environment Palaeomagnetic classification of continental red beds A practical classification of continental red beds | 60
60
63
64
66 | | CHAPTER 2 DESERT RED BEDS | 69 | | INTRODUCTION | 69 | | MODERN DESERT SEDIMENTS | 69 | | DESERT FLUVIAL SEDIMENTS | 71 | | AEOLIAN SAND DEPOSITS Ripples Dunes and draas Barchans Seifs Transverse forms Parabolic dunes | 72
74
77
78
80
82
84 | | Rhourds The internal structure of modern and ancient aeolian deposits | 84
85 | | The textural characteristics of aeolian sands Grain size | 88
89
91 | |--|---| | Roundness and frosting | 95 | | DESERT LAKES AND INLAND SABKHAS | 96 | | THE REDDENING OF DESERT SEDIMENTS Introduction The detrital model - Simpson Desert, Australia The diagenetic model - Sonoran Desert Early diagenetic reddening Late diagenetic reddening | 96
100
102
104
104 | | ANCIENT AEOLIAN RED BEDS | 105 | | Introduction Distinguishing aeolian from shallow marine sandstones The Lower Permian of NW Europe Marginal fanglomerates and wadi deposits Aeolian sands Desert lake and sabkha deposits Diagenesis and reddening of the Rotliegendes Mechanical infiltration of clay Authigenic quartz, feldspar and clay minerals Carbonate and sulphate cements | 105
107
108
111
113
114
116
117
120 | | CONCLUSIONS AND FURTHER READING | 125 | | | | | CHAPTER 3 DELTA PLAIN RED BEDS | 126 | | INTRODUCTION | 126 | | DELTA MODELS | 127 | | DELTAIC FACIES ASSOCIATIONS The delta plain River-dominated delta plains Fluvial distributary channels Interdistributary environments Swamps Lacustrine and lacustrine delta-fill deposits Tide-dominated delta plains Tidal distributary channels Interdistributary areas The delta front | 131
132
132
134
137
138
138
139
139 | | DELTA GROWTH AND ABANDONMENT | 146 | | ANCIENT DELTAIC SUCCESSIONS | 147 | | RED BEDS IN ANCIENT DELTA PLAINS Introduction The Difunta Group of northeastern Mexico The delta plain facies Colour variations and mineralogy The origin of the delta plain red beds Carboniferous red beds in Europe and North America Introduction Secondary post-diagenetic reddening beneath the sub-Permian unconformity Red beds of the Upper Coal Measures of the UK A. South Wales B. The Blackband and Etruria Marl Groups of North Staffordshire | 150
150
153
155
156
158
159
160
163
164
168 | | Upper Carboniferous red beds at Joggins, Nova Scotia CONCLUSIONS AND FURTHER READING | 175
178 | | The state of s | 710 | | | XI | |---|---| | CHAPTER 4 ALLUVIAL RED BEDS | 179 | | INTRODUCTION | 179 | | RIVER CHANNELS | 180 | | ALLUVIAL FANS Alluvial fan deposits Debris flow deposits Sheet flood deposits Stream channel deposits Sieve deposits | 182
183
184
185
185 | | PEBBLY BRAIDED RIVERS Longitudinal bars Bars in curved channel reaches Sedimentary organization of pebbly alluvium on a large scale | 185
186
188
189 | | SANDY LOW-SINUOSITY RIVERS | 190 | | EPHEMERAL STREAM CHANNELS | 194 | | MEANDERING RIVERS Introduction Point bars | 198
198
200 | | RIVER BANKS AND FLOODPLAINS Bank deposits Floodplains Interfluvial areas | 204
204
207
208 | | THE TRANSPORT OF IRON IN RECENT ALLUVIUM | 213 | | ANCIENT ALLUVIAL RED BEDS The Old Red Sandstone Internal facies - reddened pebbly alluvium The reddening of pebbly alluvium External facies - reddened sandy and muddy alluvium A. Coarse members B. Fine members The reddening of sandy and muddy alluvium A. Fine member reddening B. Coarse member reddening The Lower Triassic red beds of NW Europe Upper Cretaceous red beds of the southern Bohemian Basins | 220
221
222
230
233
233
237
244
246
250
253 | | CONCLUSIONS AND FURTHER READING | 264 | | CHAPTER 5 THE DIAGENESIS OF CONTINENTAL RED BEDS INTRODUCTION | 265
265 | | SANDSTONE DIAGENESIS The composition of natural waters and early diagenetic reactions Cementation Mineral transformation and replacement Textural changes during diagenesis Red bed diagenesis | 265
267
269
272
273
274 | | THE MECHANICAL INFILTRATION OF DETRITAL CLAY
Cenozoic alluvium of southwestern USA and northwestern Mexico
Mechanically infiltrated clay in ancient red beds | 275
275
280 | | DISSOLUTION OF FRAMEWORK SILICATES Feldspars Micas | 280
282
284 | | Ferromagnesian minerals | 291 | |--|--| | CLAY REPLACEMENT | 293 | | AUTHIGENIC MINERALS Potassium feldspar Zeolites Clay minerals Illite-montmorillonite Illite Kaolinite-dickite Chlorite | 299
299
302
308
308
309
309
313 | | Calcite
Haematite and precursor oxides
Quartz | 314
316
319 | | STAGES IN THE DIAGENESIS OF CONTINENTAL RED BEDS | 319 | | CHAPTER 6 THE MINERALOGY AND GEOCHEMISTRY OF IRON OXIDES IN RED BEDS | 323 | | IRON OXIDE MINERALS
The titanomagnetites-titanomaghemites
The haematite-ilmenite series
Ferric oxyhydroxides | 323
323
326
329 | | OPAQUE OXIDES IN RED BEDS
Titanomagnetite
Haematite-ilmenite | 330
330
333 | | PRECIPITATION AND STABILITY OF FERRIC OXYHYDROXIDES The dehydration of ferric oxyhydroxides | 338
340 | | ENVIRONMENTAL CONTROLS ON THE PRECIPITATION AND DIAGENETIC HISTORY OF FERRIC OXYHYDROXIDES Marine conditions An ancient example: The Catskill clastic wedge Lacustrine conditions An ancient example: The Orcadian Basin | 344
345
348
351
359 | | POST-DEPOSITIONAL INFLUENCE OF GROUNDWATER ON THE MINERALOGY AND GEOCHEMISTRY OF RED BEDS Reddening by groundwater | 365
365 | | Secondary reduction zones IRON CONTENT OF ANCIENT RED BEDS CONCLUSIONS AND FURTHER READING | 367
376
379 | | CHAPTER 7 THE MAGNETIZATION OF CONTINENTAL RED BEDS INTRODUCTION Palaeomagnetism and rock magnetism The physical basis of magnetism Hysteresis Anisotropy, magnetic domains and the time dependence of magnetization | 380
380
380
382
384
384 | | MINERAL MAGNETISM The titanomagnetites and titanomaghemites Haematite Grain size effects The relative stability of spin canted and defect moments | 388
389
390
394
398 | | MAGNETIZATION PROCESSES IN SEDIMENTS Detrital remanent magnetization The occurrence of DRM in nature | 403
403
408 | | | XIII | |---|--| | Chemical remanent magnetization CRM of the goethite - haematite transition | 411
413 | | THE MAGNETIC PROPERTIES OF CONTINENTAL RED BEDS Induced magnetization (J_i -H) and isothermal remanence (IRM) curves J_i -T analysis The NRM of red beds Chemical demagnetization Comparative thermal demagnetization of pigment, specularite and rock | 417
418
424
427
429
434 | | CHAPTER 8 THE PALAEOMAGNETISM OF CONTINENTAL RED BEDS | 440 | | INTRODUCTION | 440 | | PROTEROZOIC BASINS OF WESTERN CANADA
The Martin Formation
The Christie Bay Group | 441
443
446 | | THE LATE PRECAMBRIAN OF NORTH WEST SCOTLAND | 453 | | THE OLD RED SANDSTONE
The Anglo-Welsh Basin
The Orcadian Basin | 460
460
463 | | TRIASSIC RED BEDS OF THE WESTERN USA
The Moenkopi Formation | 468
469 | | LATE CENOZOIC RED BEDS OF BAJA CALIFORNIA | 475 | | THE RELATIONSHIP BETWEEN DIAGENESIS AND PALAEOMAGNETISM IN CONTINENTAL RED BEDS | 481 | | Models of remanence acquisition The palaeomagnetic evolution of red beds Type A red beds Type B red beds Type C red beds | 481
484
485
487
488 | | REFERENCES | 493 | | SUBJECT INDEX | 537 |