CONTENTS

PRI	EFA	CE	xxi	
CO	ŃTR	IBUTORS	xxv	
GLO	OSSA	ARY	xxvii	
1	(Tiı	roduction to Thermodynamic (Energy-Dependent) and Mechanica ne-Dependent) Processes: What Are They and How Are They nifested in Chemistry and Catalysis?	al	
Gerhard F. Swiegers				
	1.1 1.2	Thermodynamic (<i>Energy-Dependent</i>) and Mechanical (<i>Time-Dependent</i>) Processes What Is a Thermodynamic Process?	1 5	
	1.3	What Is a Mechanical Process?	7	
	1.4	The Difference between <i>Energy-Dependent</i> (Thermodynamic) and <i>Time-Dependent</i> (Mechanical) Processes 1.4.1 Time-Dependent (Mechanical) Processes Are Path-Reliant	9	
		and Spatiotemporal in Character 1.4.2 Time-Dependent (Mechanical) Processes Have a Flat Underlying Energy Landscape (or Are Unaffected by the Energy Landscape)	9 10	

vii

î.

	1.4.3	Time-Dependent (Mechanical) Processes Display	
		Deterministic Chaos; This Causes Them to be Stochastic	
		and Complex	11
	1.4.4	Time-Dependent (Mechanical) Processes Often Involve	
		Synergies of Action	14
	1.4.5	Time-Dependent (Mechanical) Processes Characterize	
		Numerous Aspects of Human Experience	15
1.5	Time-	and Energy-Dependence in Chemistry and Catalysis	17
	1.5.1	The Origin of Time- and Energy-Dependent Processes	
		in Chemistry	17
	1.5.2	Examples of Time-Dependent Processes in Chemistry	19
		Time- and Energy-Dependent Processes in Catalysis	21
		Is There Such a Thing as a Time-Dependent	
		Process in Catalysis?	23
1.6	The A	ims, Structure, and Major Findings of this Series	24
	1.6.1	Summary of the Key Finding: Many Enzymes Seem	
		to be Time-Dependent Catalysts	25
	1.6.2		
		Other Major Findings of this Series	28
Refe	erences		34

2	Terr	erogeneous, Homogeneous, and Enzymatic Catalysis. A Shared ninology and Conceptual Platform. The Alternative of e-Dependence in Catalysis	37
	Gerh	ard F. Swiegers	
	2.1	Introduction: The Problem of Conceptually Unifying Heterogeneous, Homogeneous, and Enzymatic Catalysis? Trends in Catalysis Science	37
	2.2	Background: What Is Heterogeneous, Homogeneous, and Enzymatic Catalysis	38
		2.2.1 Homogeneous and Heterogeneous Catalysis	38
		2.2.2 Hybrid Homogeneous-Heterogeneous Catalysts	40
		2.2.3 Enzymatic Catalysis	41
		2.2.4 Theories and Mimicry of Enzymatic Catalysis	42
	2.3		
		and Multicentered Homogeneous Catalysis	44
		2.3.1 Single-Centered Homogeneous Catalysts. Most Manmade Homogeneous Catalysts Are	
		Single-Centered Catalysts	44
		2.3.2 Multicentered Homogeneous Catalysts: Most Enzymes Are Multicentered Homogeneous Catalysts	46
	2.4	The Distinction between Single-Site/Multisite Catalysts and Single-Centered/MultiCentered Catalysts in Heterogeneous Catalysis: An Important Convention	-10
		Used in This Series	48

		2.4.1	A Key Convention Used in This Series: A Catalytic Site Is a Collection of Atoms about Which a Reaction Is Catalyzed. A Catalytic Center Is an Atom Within that Site Which Binds and Facilitates the Transformation of a Reactant	48
	2.5	The A	lternative of Time-Dependence in Catalysis	48
		erences	and and of the Dependence in Catalysis	52
	1010			52
3	and		ual Description of Energy-Dependent ("Thermodynamic") Dependent ("Mechanical") Processes in Chemistry	55
		ard F. S		55
	3.1	Introd	uction	55
	3.2	Theor	etical Considerations: Common Processes in	
		Uncata	alyzed Reactions	56
			Reactions as Collisions Between Molecules	56
		3.2.2		
			Time-Dependent Reactions	57
		3.2.3	Time-Dependent and Energy-Dependent	
			Domains Were First Observed in Unimolecular	50
		224	Gas-Phase Reactions	58
		3.2.4	The Pathway of the Reaction Is also Controlled by the	50
		3.2.5	Least-Likely Step in the Sequence Transition State Theory (TST) Describes the Pathway	59
		5.2.5	and Rate of Energy-Dependent Reactions. Transition	
			State Theory Corresponds to the High-Pressure	
			Limit of Hinshelwood–RRK Theory	61
		3.2.6	Time-Dependent Reactions in the Liquid Phase:	01
		5.2.0	Some Examples	63
		3.2.7	The Transition between Energy-Dependence and	05
		0.2.1	Time-Dependence as a Function of Temperature.	
			Curvature in Arrhenius Plots	65
		3.2.8	Methods of Creating Time-Dependent Reactions	67
		3.2.9	Summary: The Key Properties of Time-Dependent	
			and Energy-Dependent Reactions	68
	3.3	Theore	etical Considerations: Common Processes in	
			zed Reactions	68
		3.3.1	Catalyzed Reactions Are More Likely to be	
			Time-Dependent than Are Uncatalyzed Reactions	68
		3.3.2	Catalysis Changes the Reaction Processes	69
		3.3.3	Physical Manifestation of Time- and Energy-Dependence	
			in Catalysts	72
		3.3.4	The Distinction Between Time-Dependent Catalysis	
			and Diffusion-Controlled Catalysis	72
		3.3.5	Energy-Dependent and Time-Dependent Control	
			of Catalysis	73

ix

CONTENTS

		3.3.6	The Influ	uence of the Product Release Step	74
	3.4	Conclu	isions: Er	ergy- and Time-Dependent Catalysis	75
		nowledg			75
		rences	,		76
4	Desc	ribes T	wo Inde	n Heterogeneous Catalysis. Sabatier's Principle pendent Catalytic Realms: Time-Dependent alysis and Energy-Dependent	
) Catalysis	77
		ard F. S			
	4.1	Introdu	uction		77
	4.2	Sabatio	er's Princ	iple in Heterogeneous Catalysis	79
		4.2.1	Volcano		79
		4.2.2	Some In	nportant Points about Volcano Plots	82
		4.2.3	Time-D	ependent Catalysis in Volcano Plots	82
			4.2.3.1	How Is Time-Dependence Created on	
				the Left-Hand Side of the Volcano Plot?	82
			4.2.3.2	Why Do Volcano Plots Slope Upward	
				on the Left	84
			4.2.3.3	The Rate-Determining Step in a	
				Time-Dependent Catalyst	86
			4.2.3.4	The Physical Manifestation of Time-Dependent Catalysis. "Saturation" of a Time-Dependent	
				Catalyst	87
		4.2.4	Energy-	Dependent Catalysis in Volcano Plots	88
			4.2.4.1	How Is Energy-Dependence Created on the	
				Right-Hand Side of the Volcano Plot?	88
			4.2.4.2	Why Do Volcano Plots Slope Downward on	
				the Right?	88
			4.2.4.3	The Rate-Determining Step in an	
				Energy-Dependent Catalyst	89
			4.2.4.4	The Physical Manifestation of Energy-	
				Dependence. Saturation in an	
			-	Energy-Dependent Catalyst	89
		4.2.5		ysical Origin of Sabatier's Principle	89
		4.2.6		Plots Illustrating Sabatier's Principle	90
		4.2.7		ng of Volcano Plots	91
		4.2.8		n Pathway as a Function of the Most-Favored on State	92
	4.3	Excer	tions to S	Sabatier's Principle	93
	4.4			ciple in Homogeneous Catalysis	93
	4.5			abatier's Principle Describes	95
	4.5			ent Catalytic Domains: Energy- and	
				nt Catalysis	0.4
	1 م		-	in Catarysis	94
		nowled	gments		95
	Ref	erences			95

CONTENTS

5	Enz ("M Cat	ymes I lechani	endence in Homogeneous Catalysis. 1. Many Display the Hallmarks of Time-Dependent (cal'') Catalysis. Nonbiological Homogeneous Are Typically Energy-Dependent ("Thermodynamic")	97
	Robi	n Brimb	lecombe, Jun Chen, Junhua Huang, Ulrich T. Mueller-Westerhoff,	
	and	Gerhard	l F. Swiegers	
	5.1	Introd	luction	97
	5.2	Histor	rical Background: Are Enzymes Generally	
			ry-Dependent or Time-Dependent Catalysts?	99
	5.3	The N	Aethodology of This Chapter: Identify, Contrast, and	
			nalize the Common Processes Present in Biological	
		and N	Ionbiological Homogeneous Catalysts	100
	5.4	Does	Michaelis–Menten Kinetics in Enzymes Indicate	
		that T	hey Are Time-Dependent Catalysts?	102
		5.4.1	Michaelis-Menten Kinetics	102
		5.4.2	Kinetics in Most Nonbiological Catalysts	103
		5.4.3	· · · · · · · · · · · · · · · · · · ·	103
		5.4.4		
			Saturation Kinetics Is Necessarily an Indication of	104
		5.4.5	Time-Dependence Physical Studies of the Rate Processes in Enzymes	104
		5.4.5	Are Consistent with a Time-Dependent Action	106
		5.4.6	A Time-Dependent Catalyst Cannot Become an	100
		5.1.0	Energy-Dependent Catalyst, or vice versa, Without	
			Changing the Temperature or Chemically Altering	
			the Reactivity of the Reactants	107
		5.4.7	The Current View of Michaelis-Menten Kinetics	
			Is Flawed by an Unwarranted Assumption	107
		5.4.8	Summary: Michaelis-Menten Kinetics Is Characteristic	
			of Time-Dependent Catalysis. Time-Dependent Catalysis	
			Provides an Explanation for Michaelis-Menten	
			Kinetics in Enzymes	109
	5.5		General Characteristics of Catalysis by Enzymes and	
		-	arable Nonbiological Homogeneous Catalysts	110
		5.5.1	Enzymes Employ Weak and Dynamic Individual	
			Binding Interactions with Their Substrates.	110
		5.5.2	Nonbiological Catalysts Do Not Enzymes Display Transition State Complementarity.	110
		5.5.4	Nonbiological Catalysts Do Not	111
		5.5.3	Enzymatic Catalysis Is "Structure-Sensitive."	
		5.5.5	Nonbiological Catalysis Is "Structure-Insensitive"	112
		5.5.4	Enzymes Transform Catalytically Unconventional	
		-	Groups into Potent Catalysts. Nonbiological Catalysts	
			Use Only Conventional Catalytic Groups	113
		5.5.5	Enzymes Catalyze Forward and Reverse Reactions.	
			Nonbiological Catalysts Do Not	113

		5.5.6	Enzymes Display High Selectivity and Activity.	115
		5.5.7	Nonbiological Catalysts Do Not Enzymes Display Convergent Synergies. Nonbiological	115
		5.5.7	Catalysts Display Complementary Synergies	115
		5.5.8	Summary	116
	5.6		alization of the Underlying Processes. The Mechanism	
	5.0		ion in Time-Dependent and Energy-Dependent Catalysts	117
		5.6.1	Common Processes in Multicentered Homogeneous	
			Catalysts	117
		5.6.2	The Influence of the Strength of the Individual	
			Catalyst-Reactant Binding Interactions	119
		5.6.3	The Coexistence of Transition State Complementarity,	
			Structure-Sensitive Catalysis, and Unconventional	
			Catalytic Groups in Enzymes Is Caused by their Weak	
			Individual Binding Interactions	122
		5.6.4	The Origin of the Time-Dependence and the Synergies	
			of Enzymes	123
		5.6.5	The Mechanism of Time-Dependence in Enzymes	
			Resolves the Contradiction of a Kinetically Observed Rapidly Forming and Dissociating Intermediate in the	
			Face of Strong Overall Substrate Binding	125
		5.6.6	Catalysis in Enzymes Involves Synchronization of	125
		5.0.0	Enzyme Binding and Enzyme Flexing	125
		5.6.7	Summary: The Origin of the General Properties of	125
		5.0.7	Enzymes	127
		5.6.8	Catalysis in Nonbiological Analogues Depends	
			on the Activation Energy E_a	127
		5.6.9	Enzymatic Selectivity and Synergies Derive from	
			Time-Dependence	128
		5.6.10	Enzymatic Activity Is Consistent with	
			Time-Dependence	129
	5.7	All Ge	eneralizations Support Time-Dependence in Enzymes	129
	5.8	Time-	Dependence in a Nonbiological Catalyst Generates	
		the Di	stinctive Properties of Enzymes	130
	5.9	Conch	usion: Many Enzymes Are Time-Dependent Catalysts	133
	Ack	nowled		134
		rences		134
				154
6	Tim	e-Depe	ndence in Homogeneous Catalysis. 2. The General	
	Acti	ons of '	Time-Dependent ("Mechanical") and	
	Ene	rgy-De	pendent ("Thermodynamic") Catalysts	137
			lecombe, Jun Chen, Junhua Huang, Ulrich T. Mueller-Westerhoff, F. Swiegers	
	6.1	Introd	uction	137
	6.2		and Energy-Dependent, Multicentered	157
	0.2	Homo	geneous Catalysts	139
			G	137

7

6.3	B The Action of <i>Energy-Dependent</i> , Multicentered				
	Home	ogeneous Catalysts	141		
6.4	The A	Action of Time-Dependent, Multicentered Homogeneous			
	Cataly		146		
	6.4.1	The Activation Energy E_a Does Not Provide a True			
		Measure of the Threshold Energy in Time-Dependent			
		Catalysts	148		
	6.4.2	Weak and Dynamic Binding and Activation Is			
		Sufficient to Fulfill the Threshold Energy in			
	612	Time-Dependent Catalysts	149		
	6.4.3	Transition State Formation in a Time-Dependent			
		Catalyst Can Be Thought of as a Coordinated Mechanical Process	150		
	6.4.4	Time-Dependent Catalysts Are Machine-Like	150		
	0.4.4	(Mechanical) in Their Catalytic Action	150		
	6.4.5	The Origin of Michaelis–Menten Kinetics in	150		
	01112	Time-Dependent Catalysts	151		
	6.4.6	Time-Dependent Catalysts like Many Enzymes	101		
		Display All of the Characteristic Hallmarks of			
		Mechanical Processes	153		
	6.4.7	Additional Insights into Enzymatic Catalysis: The			
		Bidirectionality of Enzymatic Catalysis Originates			
		from the Mechanical Nature of the Catalytic Action	154		
	6.4.8	Additional Insights into Enzymatic Catalysis: Many			
		Enzymes Select the First-Encountered Transition State,	1.5.5		
		Rather than the Lowest Energy Transition State	155		
6.5		nportance of Recognizing Time-Dependent Catalysis	155		
6.6		Dependent Catalysis Is Very Different to			
		y-Dependent Catalysis and Therefore Seems Unfamiliar	156		
6.7		usions for Biology	157		
6.8	Conch	usions for Homogeneous Catalysis	157		
6.9	The "I	Ideal" Homogeneous Catalyst	158		
6.10	Conclu	usions for the Conceptual Unity of the Field of Catalysis	158		
Ack	nowled	gments	159		
	rences	5	159		
	ienees				
Unif	ving th	e Many Theories of Enzymatic Catalysis. Theories			
of E	nzymat	tic Catalysis Fall into Two Camps: Energy-Dependent			
("Tł	iermod	ynamic") and Time-Dependent ("Mechanical")			
	alysis	• / -	161		
Gerh	ard F. S	wiegers			
7.1	Introdu	uction	161		
7.2		ies of Enzymatic Catalysis	163		
	7.2.1	Adsorption Theory	163		
	7.2.2	"Lock-and-Key" Theory	163		
	7.2.3	Haldane's Strain Theory	164		
	7.2.4	Pauling's Theory of Transition State Complementarity	165		

		7.2.5	Koshland's Induced Fit Theory. Fersht's Concept				
			of Stress and Strain	165			
		7.2.6	Intramolecularity	165			
		7.2.7	Orbital Steering	167			
		7.2.8	Entropy Traps	168			
		7.2.9	The Proximity (Propinquity) Effect	168			
		7.2.10	"Coupled" Protein Motions	168			
			The Spatiotemporal Hypothesis	169			
	7.3	Theori	es Explaining Enzymatic Catalysis Fall into Two				
		Camps	: Energy-Dependent and Time-Dependent Catalysis	169			
		7.3.1	Haldane's Strain Theory and Fersht's Concept of				
			Stress and Strain Are Valid Explanations for Rate				
			Accelerations but Do Not Seem to be Responsible for				
			the Rate Accelerations of Many Enzymes	171			
		7.3.2	Theories Based on Reaction Entropy Are Valid				
			Explanations for Rate Accelerations but Do Not Seem				
			to be Behind the Rate Accelerations of Many Enzymes	172			
		7.3.3	Experiments Studying Intramolecular Reaction				
			Rates Were Probably Often Conceptually				
			Contradictory	172			
		7.3.4	Theories of "Coupled" Protein Motions and				
			Machine-Like Catalytic Actions Seem to Be Generally	172			
		~	Accurate Descriptions of Enzymatic Catalysis	173			
	7.4	Studies Verifying Pauling's Theory in Model Systems					
			orrect, but Describe Energy-Dependent and not	174			
		Time-Dependent Catalysis					
	7.5	The Anomaly Described in the Spatiotemporal Hypothesis					
		Originates, in Part, from the Onset of Time-Dependence					
	Ack	nowledg	gments	177			
	Refe	erences		177			
8			Heterogeneous, Homogeneous, and Enzymatic				
	Cat	alysis.	The "Ideal" Catalyst	181			
	Gerł	ard F. S	Swiegers				
	8.1	Introd	uction	181			
	8.2	Syner	gy in Heterogeneous Catalysts	183			
	8.3		-Centered Nonbiological Homogeneous Catalysts				
			heir 'Mutually Enhancing' Synergies	184			
		8.3.1	Facial Selectivity in Single-Centered Catalysts	184			
		8.3.2	Energy-Dependent, Single-Centered Homogeneous				
			Catalysts Display 'Mutually Enhancing' Synergies	187			
		8.3.3	The Synergies in Time-Dependent, Single-Centered				
		-	Homogeneous Catalysts	188			
		8.3.4	The Selectivity of Single-Centered Catalysts	189			
	8.4	Multi	centered, Energy-Dependent Homogeneous Catalysts				
		and T	heir Functionally Complementary Synergies	190			

	8.5	Enzymes and Their Functionally Convergent Synergies	194
	8.6	Biomimetic Chemistry and Its <i>Pseudo-Convergent</i> Synergies 8.6.1 Cyclodextrin-Appended Epoxidation Catalysts:	197
		Pseudo-Convergence in a Nonbiological,	
		Multicentered Catalyst	198
	8.7	The Spectrum of Synergistic Action in Homogeneous Catalysis 8.7.1 The Relationship Between Complementary and	200
		Convergent Synergies	202
		8.7.2 The Ideal Catalyst	203
	8.8	Synergy in Catalysis Is Conceptually Related to Other	205
	ъć	Synergistic Processes in Human Experience	205
	Refe	prences	206
9	A C	onceptual Unification of Heterogeneous, Homogeneous,	
	and	Enzymatic Catalysis	209
	Gerh	ard F. Swiegers	
	9.1	Introduction	209
	9.2	Diffusion-Controlled and Reaction-Controlled Catalysis	210
	9.3	The Diversity of Catalytic Action in Heterogeneous	
		Catalysts	211
	9.4	The Diversity of Catalytic Action in Nonbiological	
		Homogeneous Catalysts	212
	9.5	The Diversity of Catalytic Action in Enzymes	214
	9.6	Heterogeneous Catalysis and Enzymatic Catalysis Has,	
		Effectively, Involved Combinatorial Experiments that Have	
		Produced Time-Dependent Catalysts. Nonbiological	
	~ -	Homogeneous Catalysis Has Not	214
	9.7	Homogeneous and Enzymatic Catalysts Are the 3-D Equivalent of 2-D Heterogeneous Catalysts	215
	9.8	A Conceptual Unification of Heterogeneous, Homogeneous,	_
		and Enzymatic Catalysis	216
	Refe	rences	218
10			
10	The	Rational Design of Time-Dependent ("Mechanical") nogeneous Catalysts. A Literature Survey of Multicentered	
		logeneous Catalysis	219
		ua Huang and Gerhard F. Swiegers	
			0 10
	10.1		219
	10.2	The Rational Design of Time-Dependent Homogeneous	221
		Catalysts 10.2.1 Design Criteria for a Time-Dependent Homogeneous	221
		Catalyst	221
		10.2.2 The Problem of Simultaneously Identifying Suitable	
		Catalytic Groups and Their Active Spatial Arrangement	223

	10.2.3	Time-Dep	pendent Homogeneous Catalysis May	
		Conceiva	bly Be Achieved by Mimicry of a Natural	
		Time-Dep	pendent Catalyst	225
	10.2.4	Time-Der	pendent Homogeneous Catalysis May	
		Conceiva	bly Be Achieved in the form of a	
		Combinat	torial Experiment Involving a "Statistical	
		Proximity		226
		10.2.4.1	A Time-Dependent Combinatorial Catalyst	
			May Display Unique Kinetics	228
		10.2.4.2		
		10.2.112	Biomimetic Catalysis Involved	
			Energy-Dependent Systems	229
	10.2.5	Time-De	pendent Catalysis May Be Useful in	
	10.2.5		nations of Small Gaseous Molecules	230
	10.2.6		We Need New Time-Dependent Catalysts?	230
10.2		-	onal Design in Multicentered Catalysis	230
10.3				230
	10.3.1		f Binding in Multicentered Catalysts	250
	10.3.2		ng the Spatial Arrangement of	231
		Catalytic		231
		10.3.2.1		
			Intermolecular Catalysts	233
		10.3.2.3		000
	10 2 2		the Spatial Organization of Catalytic Groups	233
	10.3.3		Functionally Convergent Catalysts	234
		10.3.3.1	118	004
			Functionally Convergent Catalysis	234
10.4			nbiological, Multicentered Molecular	
	•		ed in the Chemical Literature	235
	10.4.1		ecular Catalysts	235
		10.4.1.1	Functionally Convergent Catalysis	
			(Class A Type): Cofacial and Capped	
			Metalloporphyrins as Oxygen Reduction	
			Catalysts	235
		10.4.1.2	Functionally Convergent Catalysis (Class B	
			Type): [1.1]Ferrocenophanes and Related	
			Compounds as Hydrogen Generation Catalysts	241
		10.4.1.3	Pseudoconvergent Catalysis: Supramolecular,	
			Bifunctional Catalysts of Organic Reactions	245
		10.4.1.4	Probable Functionally Convergent Catalysis:	
			Rhodium-Phosphine Hydroformylation	
			Catalysts	248
		10.4.1.5	Possible Functionally Convergent Catalysis:	
			Ruthenium-Based Water Oxidation Catalysts	249
		10.4.1.6	Functionally Complementary Catalysis:	
			Intramolecular Epoxidation Catalysts	252
		10.4.1.7		
			Catalysis: Triruthenium Dodecacarbonyl	
			Hydrogenation Catalysts	252

			10.4.1.8	Statistical Approaches to Functionally	
				Convergent Catalysis: Macromolecular	
		10.4.2	T	Intramolecular Catalysts	254
		10.4.2		ecular Catalysts	259
				Functionally Complementary Catalysis	259
			10.4.2.2		
				Convergent Catalysis: Concentration	
			10 1 0 0	Effects in Intermolecular Catalysts	260
			10.4.2.3	Statistical Approaches to Functionally	
				Convergent Catalysis: Self-Assembled,	
		10.4.2	F ()	Supramolecular Catalysts	261
		10.4.3		Unexpected Mechanistic Changes	
				entered Catalysts	262
	Ackı	iowledgr	nents		263
	Refe	rences		·	263
11	m •	D			
11				chanical"), Nonbiological	
				Inctional Mimic of the Water-Oxidizing	
	Cent	er (wu	C) in Phot	osystem II (PSII)	267
	Robin	Brimbled	combe, G. C	harles Dismukes, Greg A. Felton, Leone Spiccia,	
	and C	Gerhard F	. Swiegers		
	11.1	Introdu	ction		267
	11.2	The Ph	vsical and	Chemical Properties of the Cubanes 1a-b	273
		11.2.1		Structures	273
		11.2.2		Hydride Abstraction, Leading to	215
		11.2.2	Water Re		275
		11.2.3		Generation	275
		11.2.4		e Catalytic Cycle	277
		11.2.5		• •	277
		11.2.6	Summary		278
	11.3		-	Means of Solubilizing and Immobilizing	
	11.5			al Complexes	278
	11.4			ical Cells and Dye-Sensitized Solar Cells for	210
	11.4			Ical Cells and Dye-Sensitized Solar Cells for	279
	11 5		Splitting		219
	11.5			ter Oxidation by Cubane 1b Doped into a	202
			Support		282
		11.5.1		Electrochemistry	282
		11.5.2		emistry of 1b Doped into a	202
			Nafion M		283
		11.5.3		alytic Effects Are Observed Under	000
			CV Cond		283
		11.5.4		Electrocatalytic Effect Is Observed at 1.00 V	20 4
			(vs. Ag/A	AgCI)	284
		11.5.5	If the Pho	tocurrent Is Caused by Water Oxidation	
				This Involves a Decrease in the	005
			Overpoter	ntial of 0.4 V	285

	٠	٠	٠	
vv	R	1	1	
A 1	,			

12

	11.5.6	The Photocurrent Is Observed only in the Presence of Water. The System Saturates at Low	
		Water Content, Consistent with a Time-Dependent Catalytic Action	286
	11.5.7	The pH Dependence of the Photocurrent Is Consistent with Water Oxidation	287
	11.5.8	Bulk Water Is a Reactant and Oxygen Is Generated	287
	11.5.9	The Quantity of Gas Generated Matches the Current	007
	11 5 10	Obtained. Notable Turnover Frequencies Are Implied Photocurrent as a Function of the Illumination	287
	11.5.10	Wavelength	290
	11.5.11	The Photoaction Spectrum of the Catalysis	
		Corresponds to the Main LMCT Absorption Peak of 1b	290
11.6	The Ch	allenge of Dye-Sensitized Water-Splitting	291
11.7		chanism of the Catalysis	292
11.8	Conclus	sions	293
Refer	rences		294
Time	-Depend	ent ("Mechanical"), Nonbiological Catalysis.	
2. Hi	ghly Eff	cient, "Biomimetic" Hydrogen-Generating	
	rocataly		297
		ua Huang, Gerhard F. Swiegers, Chee O. Too,	
and C	Gordon G.	Wallace	
12.1	Introdu		297
12.2		er and Polymer Preparation	301
12.3		c Experiments	302
	12.3.1	PPy-9 and PPy-12 Display Anodic Shifts in the Most Positive Potential for Hydrogen Generation	302
	12.3.2	PPy-9 and PPy-12 Increase the Rate of	502
		Hydrogen Generation on Pt by ca. 7-Fold after	
	10.0.0	12 h at -0.44 V	304
	12.3.3	PPy-9 and PPy-12 Increase the Rate of Hydrogen	207
	12.3.4	Generation on Pt per Unit Area by ca. 3.5-Fold The Mechanism of Catalysis in PPy-9. Is PPy-9 a	307
		Combinatorial ("Statistical Proximity") Catalyst?	308
	12.3.5	Polypyrrole Is Likely Involved in the Catalytic Cycle	309
	12.3.6	Other Evidence for the Involvement of Polypyrrole	
	12.3.7	in the Catalytic Cycle	311
	12.5.7	The Pyrrole in Polypyrrole Is a Powerful, Time-Dependent, Combinatorial, "Statistical	
		Proximity" Catalyst	313
12.4	Conclu	sions: A Combinatorial "Statistical Proximity"	010
	Catalys	t Was Obtained as a Bulk, Hybrid	
		geneous-Heterogeneous Catalyst	316
Acknowledgments			
References			317

13	3. A Readily Prepared, Convergent, Oxygen-Reduction					
		rocataly		319		
	Jun C	hen, Geri	hard F. Swiegers, Gordon G. Wallace, and Weimin Zhang			
	13.1	Introdu	lection	319		
	13.2	Cofacia	al Diporphyrin Oxygen-Reduction Catalysts	321		
	13.3	Immob	Phase Polymerization of Pyrrole as a Means of ilizing High Concentrations of Monomeric			
		•	ic Groups at an Electrode Surface	323		
	13.4	•	ation and Catalytic Properties of PPy-3	324		
		13.4.1	······································			
		10.40	Tetraphenylporphyrin, PPy-3	324		
		13.4.2	Electrochemistry of, and Oxygen Reduction by,	204		
		12 4 2	Polypyrrolle-Co Tetraphenylporphyrin, PPy-3	324		
		13.4.3		206		
		13.4.4	Polypyrrolle-Co Tetraphenylporphyrin, PPy- 3 Rotating Ring Disk Electrochemistry (RRDE) of	326		
		15.4.4	Polypyrrolle-Co Tetraphenylporphyrin, PPy-3	328		
		13.4.5	The Product Distribution Relative to the	520		
		15.4.5	Proportion of 3 in the Polypyrrolle-Co			
			Tetraphenylporphyrin, PPy-3	329		
	13.5	PPv-3	as a Fuel Cell Catalyst	330		
	15.5		PPy-3 on Carbon Fiber Paper	330		
		13.5.2	•	550		
		10.0.2	Carbon Fiber Paper	330		
		13.5.3	Morphology of the PPy-3 Carbon Fiber	000		
			Composite Film	330		
		13.5.4	Oxygen-Reduction Catalysis by the PPy-3			
			Carbon Fiber Composite Film in Simple Fuel			
			Cell Test Apparatus	331		
	13.6	Conclu	sions	334		
	Refer	ences		335		
		enees				
Apŗ	oendix		y Is Saturation Not Observed in Catalysts t Display Conventional Kinetics?	337		
App	endix	B Gra Sat	aphical Illustration of the Processes Involved in the uration of Molecular Catalysts	341		
Ind	ex			347		