TABLE OF CONTENTS

Page

- Copyright; Additional Copies ñ
- Foreword: Dedication ïï
- Preface and Acknowledgments xii

Chapter 1

INTRODUCTION

- STRUCTURAL DEFINITIONS 1
- LATERAL FIT OF SHEETS WITHIN A LAYER 3
- Tetrahedral rotation 4
- Other structural adjustments 5
- 5 UNIT CELLS
- 6 **CLASSIFICATION**
- 8 REFERENCES

Chapter 2

S.W. Bailey

S.W. Bailey

POLYTYPISM OF 1:1 LAYER SILICATES

- 9 INTRODUCTION
- DERIVATION OF STANDARD POLYTYPES 11
- 11 Assumptions
- Derivation of 12 standard polytypes 12
- **IDENTIFICATION OF NATURAL SPECIMENS** 16
- Trioctahedral species 16
- X-ray powder patterns 16
- 17 Single crystal patterns
- 22 Trioctahedral 1:1 polytypes found in nature
- 22 Dioctahedral species
- 23 **RELATIVE STRUCTURAL STABILITIES**
- 26 ACKNOWLEDGMENTS
- 26 REFERENCES

Chapter 3

R.F. Giese, Jr.

KAOLIN MINERALS: STRUCTURES AND STABILITIES

- 29 INTRODUCTION
- 29 **KAOLIN-GROUP MINERALS**
- 30 Crystallography
- 32 Structure refinements
- 34 Refined structures
- 38 Hydroxyl hydrogen positions
- 43 Defect structure
- 48 Spectroscopic studies
- 48 Infrared spectroscopy
- 50 Electron paramagnetic resonance spectroscopy
- 52 Nuclear magnetic resonance
- 53 HALLOYSITES
- 56 57 Structure
- Interlayer water
- 60 Identification
- 60 SUMMARY
- 61 ACKNOWLEDGMENTS
- 62 REFERENCES

Chapter 4

H.H. Murray **KAOLIN MINERALS: THEIR GENESIS AND OCCURRENCES**

67 INTRODUCTION

69 GENESIS

- 72 OCCURRENCES OF SELECTED KAOLIN DEPOSITS
- 73 HYDROTHERMAL KAOLIN DEPOSITS
- 73 China; Italy; Japan
- 74 Mexico; United States
- 75 RESIDUAL KAOLIN DEPOSITS
- 75 Argentina; Australia
- 76 China; Czechoslovakia; German Democratic Republic; Indonesia
- 78 USSR; South Africa
- 78 MIXED HYDROTHERMAL AND RESIDUAL KAOLIN DEPOSITS
- 78 Cornwall, England
- 80 New Zealand
- 80 SEDIMENTARY KAOLIN DEPOSITS
- 80 Australia; Brazil
- 82 Federal Republic of Germany
- 83 Spain; Suriname
- 84 United States
- 86 SUMMARY
- 87 REFERENCES

Chapter 5

F.J. Wicks & D.S. O'Hanley

SERPENTINE MINERALS: STRUCTURES AND PETROLOGY

91	INTRODUCTION
91	CRYSTAL STRUCTURES
92	Lizardite
93	Structural refinements
98	Electron microscopy
99	Composition
101	Chrysotile
104	Cylindrical polytypes
106	Structural refinements
109	Electron microscopy
111	Polygonal serpentine
113	Composition
114	Antigorite
115	Structural refinements
119	Electron microscopy
122	Composition
123	Carlosturanite
124	IDENTIFICATION
125	X-ray powder diffraction
125	Lizardite
128	Chrystotile; Antigorite
128	Single-crystal diffraction
129	Lizardite; Antigorite
129	Fiber diffraction
129	Chrysotile
130	Antigorite
131	Microbeam camera
131	HRTEM studies
132	TEXTURES IN SERPENTINITES
135	CASSIAR ASBESTOS MINE
137	Serpentine textures and their distribution
140	TRANSITIONS AMONG SERPENTINE MINERALS AND TEXTURES
142	STABLE ISOTOPES
145	SERPENTINE PHASE DIAGRAM
146	MgO-SiO ₂ -H ₂ O system
148	Serpentine-out reactions
148	MgO-Al ₂ O ₃ -SiO ₂ -H ₂ O system

- FeO-Fe₂O₃-MgO-Al₂O₃-SiO₂-H₂O system 149
- 150 Other components
- Discussion of phase diagram 151
- 153 Importance of water pressure
- 155 Types of serpentinization
- 156 THE ROLE OF FRACTURES AND DEFORMATION
- CHRYSOTILE ASBESTOS DEPOSITS 157
- 159 ACKNOWLEDGMENTS
- 159 REFERENCES

S.W. Bailey

STRUCTURES AND COMPOSITIONS **OF OTHER TRIOCTAHEDRAL 1:1 PHYLLOSILICATES**

- 169 AMESITE
- 179 BERTHIERINE
- 181 ODINITE
- 182 CRONSTEDTITE
- 184 **NI-RICH SPECIES**
- 184 Nepouite
- 185 Pecoraite
- ACKNOWLEDGMENTS 186
- 186 REFERENCES

Chapter 7

191

S.M. Savin & M. Lee

ISOTOPIC STUDIES OF PHYLLOSILICATES

- INTRODUCTION 189
- 189 Isotopic fractionations
- 189 Terminology and notation
- Factors controlling isotopic compositions of minerals 190 191
 - Isotopic compositions of natural waters
 - Temperature dependence of isotopic fractionations
- KINETICS OF MINERAL-WATER ISOTOPIC EXCHANGE 192
- Exchange rates inferred from δD and $\delta^{18}O$ values in natural systems 193
- Exchange rates inferred from laboratory experiments 194
- 196 Discussion of mineral-water exchange kinetics
- 196 EQUILIBRIUM ISOTOPE FRACTIONATIONS
- The approaches 196
- 196 Laboratory equilibration experiments
- 197 Naturally occurring samples
- 197 Statistical mechanical calculations
- 199 Empirical bond-type calculations
- 203 Estimates of mineral-water fractionations
- 203 Kaolinite
- 204 **Pyrophyllite**
- 207 Gibbsite; Smectite, mixed-layer illite/smectite, and illite
- 211 Serpentine
- 213 Chlorite
- 216 Talc: Brucite
- 218 CONCLUSIONS
- 218 ACKNOWLEDGMENTS
- 219 REFERENCES

Chapter 8

B.W. Evans & S. Guggenheim TALC, PYROPHYLLITE, AND RELATED MINERALS

- 225 INTRODUCTION
- 225 General

225	Talc and pyrophyllite
226	NOMENCLATURE AND GENERAL CHEMICAL CLASSIFICATION
226	Pyrophyllite; Talc
229	CRYSTAL STRUCTURE STUDIES
232	Pyrophyllite
240	Pyrophyllite dehydroxylate
241	Talc
242	SPECTROSCOPIC STUDIES
242	Infrared spectra
244	Tâlc
246	Pyrophyllite
246	Mössbauer spectra
246	Talc
247	Pyrophyllite
248	Nuclear magnetic resonance
249	Other spectroscopic studies
250	THERMAL DECOMPOSITION
251	Pyrophyllite
255	Talc
257	PETROLOGY AND PHASE EQUILIBRIA
259	Parageneses of pyrophyllite
265	Parageneses of talc
265	Talc in ultramafic rocks
269	Talc in siliceous dolomites
272	Hydrothermal and other low-temperature parageneses of talc
275	Talc in high-pressure rocks
276	Parageneses of minnesotaite
280	ACKNOWLEDGMENTS

.

280 REFERENCES

Chapter 9 J.V. Chernosky, Jr., R.G. Berman & L.T. Bryndzia STABILITY, PHASE RELATIONS, AND THERMODYNAMIC

PROPERTIES OF CHLORITE AND SERPENTINE GROUP MINERALS

295	INTRODUCTION
300	EVALUATION OF PHASE EQUILIBRIUM DATA AND THERMODYNAMIC ANALYSIS
301	PHASE RELATIONS OF SERPENTINE GROUP MINERALS
301	Antigorite
302	Chrysotile
305	Lizardite
306	Petrogenetic grids involving serpentine minerals
311	Gamierite and greenalite
314	STABILITY OF ALUMINOUS LIZARDITE
314	Synthesis of Lz(ss) with $x > 0.8$
314	Stability of lizardite $(x > 0.8)$
316	STABILITY OF MG-CHLORITE
318	Phase relations of Mg-chlorite with $P(H_2O) = P(Total)$
321	Stability of Mg-chlorite in H ₂ O-CO ₂ fluids
321	STABILITY OF FE, MG-CHLORITE
326	The stability of Fe-chlorite
330	The stability of intermediate Fe, Mg-chlorite
336	Thermodynamic analysis
337	Geological application of chlorite redox equilibria
341	SUGGESTIONS FOR FUTURE WORK
341	ACKNOWLEDGMENTS
341	References

CHLORITES: STRUCTURES AND CRYSTAL CHEMISTRY

347	INTRODUCTION
348	NOMENCLATURE
349	CHEMICAL COMPOSITION
353	STRUCTURAL TYPES
353	Layer-interlayer units
357	Regular-stacking polytypes
362	Semi-random stacking
362	IDENTIFICATION
362	X-ray study
362	Oriented aggregates
364	Random power mounts
366	Single crystals
372	Optical properties
376	Infrared absorption
378	Mössbauer analysis
378	DETERMINATION OF COMPOSITION
378	Direct analysis
379	Indirect analysis
381	CRYSTAL CHEMISTRY
381	Structural stabilities
384	Environmental significance of polytypes
385	Variation of composition with temperature and genesis
385	Structural details of trioctahedral IIb chlorite
385	Triclinic symmetry
390	Monoclinic symmetry
391	General observations
391	Structural details of trioctahedral Ia chlorite
392	Structural details of the trioctahedral Ib chlorite
392	Orthorhombic-shaped cell
392	Monoclinic-shaped cell
392	Multi-layer trioctahedral chlorites
393	Di, trioctahedral chlorite
393	Cookeite
395	Sudoite
395	Dioctahedral donbassite
396	Octahedral compositions outside the Mg-Fe-Al system
396	Pennantite
396	Nimite
397	Baileychlore
397	Related structures
397	Franklinfurnaceite
398	Gonyerite
398	ACKNOWLEDGMENTS
398	REFERENCES

Chapter 11

J. Laird

CHLORITES: METAMORPHIC PETROLOGY

- 405 INTRODUCTION
- 405 Petrography
- Interpretation of chlorite compositions 406
- 409 **BULK ROCK COMPOSITION**
- PELITIC ROCKS 411
- Mineralogical questions 411
- 413
- Returning to the rocks Diagenesis to chlorite grade 413
- 414 Biotite isograd
- 415 Garnet isograd

415	More Tschermak substitution
415	Petrogenetic grid
416	Medium-pressure facies series
418	Low-pressure facies series metamorphism
419	FeMg_1 substitution
420	Fluid phase
420	High-pressure facies series
422	FELSIC ROCKS
422	Diagenesis to zeolite facies
422	Prehnite-pumpellyite to greenschist facies
425	Felsic volcanic rocks
425	MAFIC ROCKS
427	Diagenesis to greenschist facies
429	Greenschist to amphibolite facies
430	Fe-rich matic compositions
43Ò	Contact metamorphism
433	Blueschist and eclogite
433	Garbenschiefer
433	ALUMINOUS CALC-SILICATE ROCK
435	Medium-pressure facies series
435	Low-pressure facies series regional metamorphism
436	Contact metamorphism
436	Metasomatism, including rodingite
437	ULTRAMAFIC ROCKS
437	Contact metamorphism
437	Metasomatism
437	IRON FORMATIONS
440	MN-RICH ROCKS
440	GEOTHERMOMETRY AND GEOBAROMETRY
440	Amphibole-chlorite
442	Gamet-chlorite
443	Chloritoid-chlorite
443	Biotite-chlorite
443	CONCLUDING REMARKS
445	ACKNOWLEDGMENTS
	•

- 445 APPENDIX
- 447 REFERENCES

C. de la Calle & H. Suquet

VERMICULITE

- 455 INTRODUCTION
- 455 GEOLOGY OF VERMICULITE
- 455 Parentage
- 456 Occurrences of macroscopic vermiculites
- 457 Characteristics of some vermiculite deposits
- 457 Santa Olalla, Spain; Benahavis, Spain; Malawi, Nyasaland
- 458 Kenya; Prayssac, France
- 458 OPTICAL PROPERTIES
- 458 CHEMICAL COMPOSITION AND CRYSTAL CHEMISTRY
- 459 Chemical analyses
- 459 Structural formula
- 460 Distribution of Si-Al substitutions
- 461 Thermal properties
- 461 SAMPLES FOR CRYSTAL STRUCTURE STUDIES
- 463 CRYSTAL STRUCTURE
- 463 X-ray diffraction studies 464 Appearance of th
 - Appearance of the levels h0l, 0kl, and 1kl for a semi-ordered structure
- 464 Quantitative analysis of diagrams of semi-ordered structures

464	Appearance of the hOl reflections corresponding to the ordered XOZ projection
466	Analysis of the Okl and 1kl levels
466	Research on the position of the maxima
468	Calculation of the diffracted intensity $I(l)$
469	Analysis of abnormal diffraction of X-rays
471	Description of stacking of layers in ordered vermiculite structures
471	Ca vermiculite $(d(001) = 14.92 \text{ Å})$. V3 stacking type
473	Na vermiculite $(d(001) = 14.83 \text{ Å})$. V3 stacking type
473	Anhydrous K. Rb. Cs. and Ba vermiculites $(d(001) = 10 \text{ Å})$
475	Vermiculites with Li.H ₂ O ($d(001) = 10.1$ Å)
475	Vermiculite-aniline complex
475	Description of stacking layers in semi-ordered vermiculite structures
476	Hydrated vermiculite phases studied quantitatively along the three axes X. Y. Z.
476	Mg vermiculite $(d(001) = 14.3 \text{ Å})$. VI stacking type
477	Na vermiculite $(d(001) = 11.85 \text{ Å})$. Vc stacking type
480	Hydrated vermiculites studied quantitatively in two dimensions
480	$Ba_{6}H_{2}O$ vermiculite ($d(001) = 12.2$ Å). Vd stacking type
480	Sr-3.3 H ₂ O vermiculite ($d(001) = 11.85$ Å). Va stacking type
482	Hydrated and anhydrous vermiculite phases studied in the direction
	perpendicular to the layers, using one-dimensional Fourier projections
482	Li 2.4H ₂ O vermiculite ($d(001) = 12.2$ Å). Vb stacking type
482	Sr-4H ₂ O vermiculite ($d(001) = 12.08$ Å). Ve stacking type
482	Ca·4H ₂ O vermiculite ($d(001) = 11.74$ Å) Ve stacking type
482	Sr vermiculite $(d(001) = 9.78 \text{ Å})$. Ca vermiculite $(d(001) = 9.50 \text{ Å})$
482	Na vermiculite $(d(001) = 9.6 \text{ Å})$. Li vermiculite $(d(001) = 9.4 \text{ Å})$
482	Hydrated vermiculites studied qualitatively
482	Ca vermiculite $(d(001) = 14.70 \text{ Å})$. V5 stacking type
483	Mg vermiculite $(d(001) = 13.8 \text{ Å})$. V7 stacking type
483	Vermiculite-organic interlayer complexes
484	Range of stability for various crystalline phases of vermiculite
484	Cation exchange and layer shifts
486	Factors that determine the crystal structure of a vermiculite
486	Role of the interlayer material
487	Role of "inherited" factors, Role of texture
488	Jelly-like structure of vermiculite: Macroscopic swelling
489	Structures belonging to vermiculites with 2M ₁ parentage
489	COMPARISON OF PROPERTIES OF VERMICULITES AND HIGH CHARGE
407	ACKNOWLEDGMENTS
402	REFERENCES
774	

SMECTITES

N. Güven

- 497 INTRODUCTION
- 498 **BASIC STRUCTURAL ELEMENTS OF SMECTITES**
- 498 Octahedral sheets
- 503 Tetrahedral sheets
- Interlayer configurations Stacking of layers 506
- 507
- 509 Classification
- DIOCTAHEDRAL SMECTITES 510
- Structural and morphological variations 511
- 511 Montmorillonite
- 517 Beidellite
- 517 Nontronite 521
- Volkonskoite 523
 - Vanadium smectite

526	Chemical variations
526	Statistical analysis of the chemical data
520	
230	I RIOCTAHEDRAL SMECTITES
531	Smectite synthesis at low temperatures
535	Trioctahedral magnesian smectites with Li ⁺ substitutions or vacancies in octahedra
535	Hectorite
539	Stevensite
540	Swinefordite
542	Trioctahedral smectites of the transition metals
542	Sauconite
544	Nickel smectite; Cobalt smectite
545	Manganese smectite
546	Trioctahedral ferromagnesian smectites
547	Saponite
549	Iron Saponite
552	ACKNOWLEDGMENTS
552	REFERENCES

D.M. Burt

VECTOR REPRESENTATION OF PHYLLOSILICATE COMPOSITIONS

- 561 INTRODUCTION
- 562 VECTOR REPRESENTATIONS
- 565 SIMPLE PHYLLOSILICATES
- 568 1:1 PHYLLOSILICATES AND ISOCHEMICAL 2:1 CHLORITES
- 571 TALC AND PYROPHYLLITE: 2:1 PHYLLOSILICATES
- 574 OCTAHEDRAL LITHIUM
- 577 INTERLAYER CHARGE (POTASSIUM AND SODIUM)
- 580 DIVALENT INTERLAYER CATIONS (CALCIUM AND BARIUM)
- 585 OCTAHEDRAL TITANIUM
- 589 FERROUS AND FERRIC IRON, PLUS HYDROGEN
- 594 SUMMARY AND CONCLUSIONS
- 596 ACKNOWLEDGMENTS
- 596 REFERENCES

Chapter 15

R.C. Reynolds, Jr.

MIXED LAYER CHLORITE MINERALS

- 601 INTRODUCTION
- 601 MIXED-LAYER CLAY MINERALS
- 601 Statistical description of ordering
- 602 Names of mixed-layered chlorite minerals
- 602 Identification of random and ordered interstratification
- 606 MIXED-LAYER CHLORITE MINERALS
- 606 THE STRUCTURES OF MIXED-LAYERED CHLORITE MINERALS
- 606 Assignment of atoms to the unit cell
- 608
 IDENTIFICATION AND CHARACTERIZATION OF MIXED-LAYERED CHLORITES

 608
 Sample preparation
- 611 001 X-RAY DIFFRACTION PATTERNS FOR MIXED-LAYERED CHLORITES 611 Ordered (R1) structures
- 613 Random (R = 0) structures
- 620 GEOLOGICAL OCCURRENCES OF NON-EXPANDABLE MIXED-LAYERED CHLORITE MINERALS
- 622 GEOLOGICAL OCCURRENCES OF EXPANDABLE MIXED-LAYERED CHLORITE MINERALS
- 625 APPENDIX
- 626 REFERENCES

SEPIOLITE AND PALYGORSKITE

631	INTRODUCTION
-----	--------------

- 632 STRUCTURES
- 639 CHEMISTRY
- PHYSICAL, PHYSICO-CHEMICAL AND THERMAL PROPERTIES 641
- 641 Physical properties
- Sorptive properties 644
- 645 Surface area modifications
- Rheological properties 646
- Thermal behavior 648

OCCURRENCES AND ORIGINS 651

- Locations and time distribution 651
- Synthesis and stability 653
- 655 Environments
- Marine 655
- Continental soils. calcretes and alluvium 656
- Continental lacustrine 659
- Association with igneous rocks 661
- 661 Summary
- 663 **APPLICATIONS**
- Sorptive applications 663
- Organo-mineral derivatives 666
- Catalytic application 666
- **Rheological** applications 666
- New applications 667
- ACKNOWLEDGMENTS 667
- REFERENCES 667

Chapter 17

S. Guggenheim & R.A. Eggleton **CRYSTAL CHEMISTRY, CLASSIFICATION, AND IDENTIFICATION**

OF MODULATED LAYER SILICATES

675	INTRODUCTION
675	GEOMETRIC CONCEPTS
676	Structures with continuous octahedral sheets
676	Reducing relatively large tetrahedral sheets
678	Enlarging relatively small tetrahedral sheets
680	Avoiding sheet-like tetrahedral linkages
682	Structures with discontinuous octahedral sheets
684	COMPOSITIONAL FACTORS
686	ENVIORNMENTAL FACTORS
687	POLYSOMATIC AND HOMOLOGOUS SERIES
688	MODULATED 1:1 LAYER SILICATE STRUCTURES
688	Antigorite
691	Carlosturanite
692	Baumite; Greenalite
694	Caryopilite; Pyrosmalite group
696	Bementite
698	MODULATED 2:1 LAYER SILICATE STRUCTURES
698	Island structures
698	Zussmanite
700	Stilpnomelane
701	Parsettensite
702	Bannisterite
702	Strip structures
702	Minnesotaite
706	Ganophyllite

- 707 Gonyerite

707 IDENTIFICATION

- 710 CLASSIFICATION
- 710 General
- 713 Discussion
- 714 ACKNOWLEDGMENTS
- 714 REFERENCES
- 719 APPENDIX: POWDER X-RAY DIFFRACTION DATA FOR MODULATED LAYER SILICATES

PREFACE AND ACKNOWLEDGMENTS

Volume 13 of *Reviews in Mineralogy* presented much of our present-day knowledge of micas. At the time of that volume (1984), I mentioned that there was too much material available to attempt to cover all of the hydrous phyllosilicates in one volume. The micas were treated first because of their abundance in nature and the fact that more detailed studies had been carried out on them than on the rest of the phyllosilicates. The serpentines, kaolins, smectites, chlorites, etc. would have to wait their turn. Now, four years later, that turn has come. Hence the peculiar nature of the title of this volume.

We know less about the rest of the phyllosilicates than we do about the micas, primarily because many of them are of finer grain sizes and lower crystallinities than most of the micas. As a result, we have been unable to determine as much detail regarding their structures, crystal chemistries, and origins. Nevertheless, there is a considerable body of literature about them, and this volume will attempt to collate and evaluate that literature. One compensating factor that has helped greatly in the accumulation of knowledge about these minerals is that some of them occur in large deposits that are of great economic value and thus stimulate interest. For this reason considerable emphasis in this volume will be related to the occurrence, origin, and petrology of the minerals.

I thank the authors of the various chapters for their enthusiasm in undertaking the writing of this volume and for their diligence in [almost] adhering to the timetable needed to produce the volume prior to the Short Course. The series editor, Paul Ribbe, with the help of Marianne Stern and Margie Sentelle, has expedited this process by his usual fast and efficient processing of the manuscripts.

Scholarships and a reduced registration fee to encourage graduate student attendance at the Short Course were made possible by grants from

Shell Development Company Chevron Oil Field Research Company J.M. Huber Corporation Conoco, Incorporated. Southern Clay Products Oil-Dri Corporation of America Thiele Kaolin Corporation

These grants are gratefully acknowledged.

S.W. Bailey Madison, Wisconsin September 1, 1988