GEOCHEMISTRY AND MINERALOGY OF RARE EARTH ELEMENTS

FOREWORD and ACKNOWLEDGMENTS

The authors of this volume presented a short course on the rare earth elements to about 80 participants in San Francisco, California, December 1-3, 1989, just prior to the fall meeting of the American Geophysical Union. This was the nineteenth in a series of short courses that the Mineralogical Society of America (MSA) began sponsoring in 1974. It was the brain-child of Robert Hazen and David Stewart, and the latter was the agent who recruited Bruce Lipin (and later, Gordon McKay) to undertake this monumental work. This book joins a long list of *Reviews in Mineralogy* (see opposite page for details) that MSA has made available to the scientific community at reasonable cost.

The editors and authors thank Mrs. Marianne Stern and Mrs. Margie Sentelle at Virginia Tech for their tireless efforts (under considerable pressure) in preparation of camera-ready copy for this volume. We also thank Mr. Todd N. Solberg for helping with word-processing problems on the computer.

Paul H. Ribbe Series Editor Blacksburg, Virginia October 31, 1989

TABLE OF CONTENTS

Page

ii Copyright; Additional Copies

iii Foreword and Acknowledgments

Chapter 1

W. V. Boynton

COSMOCHEMISTRY OF THE RARE EARTH ELEMENTS: CONDENSATION AND EVAPORATION PROCESSES

1	INTRODUCTION
1	Meteorites
3	Astrophysical context for interpretation of cosmochemical data
3	Šolar nebula
3	Solar abundances
4	COSMOCHEMICAL PROPERTIES OF THE REE
5	REE condensation reactions
5	Activity coefficients
7	Partial pressures
9	Solid/gas distribution coefficients
11	Why are the REE volatilities so different?
11	CALCULATED REE PATTERNS
11	Early condensates
12	Removing REE in the gas
12	COMPARISON WITH METEORITIC DATA
12	Ultra-refractory component
15	Group II inclusions
17	FUN inclusions
17	REE condensation as a function of oxygen fugacity

- Astrophysical scenarios to alter oxygen fugacity 18 19 Rims on CAI WHAT HAVE WE LEARNED FROM THE REE? 19 High temperatures were achieved in the solar nebula 21 A very efficient mechanism for gas/dust separation existed in the solar 21 nebula The high nebular temperatures existed for a long time 22 22 A very intense, very brief, heat source also existed The solar nebula was a chaotic environment $\overline{22}$
 - 22 SUMMARY
 - 23 ACKNOWLEDGMENTS
 - 23 REFERENCES

P. J. Patchett

RADIOGENIC ISOTOPE GEOCHEMISTRY OF RARE EARTH ELEMENTS

25	INTRODUCTION
25	Long-lived radioactive isotopes of Rare Earth Elements
25	138La-138Ce decay
25	147 Sm- $143 Nd$ decay
25	176Lu-176Hf decay
26	Chemical variations of La/Ce, Sm/Nd and Lu/Hf ratios
26	GEOCHRONOLOGICAL STUDIES
26	La-Ce and Lu-Hf chronology
26	Sm-Nd chronology
28	DEFINING BULK PLANETARY ISOTOPIC EVOLUTION
30	ISOTOPIC STUDY OF PLANETARY INTERIORS
30	The Moon
30	The Earth
32	Nd ISOTOPES IN STUDIES OF TERRESTRIAL CRUSTAL EVOLUTION
32	Model Nd ages of continental crust
34	Growth curves for the continental crust
35	Origin of granitoids
35	Nd isotopes and the sedimentary system
35	Characterization of whole crustal terranes
38	CRUSTAL Lu-Hf ISOTOPIC STUDIES
40	MAJOR UNSOLVED PROBLEMS
40	Continental crustal growth curve
40	Abundance of Archean continental crust
40	Origin of mantle isotopic variations
41	REFERENCES

Chapter 3

1342

G. A. McKay

PARTITIONING OF RARE EARTH ELEMENTS BETWEEN MAJOR SILICATE MINERALS AND BASALTIC MELTS

- 45 INTRODUCTION
- 45 Usefulness of the REE for petrogenetic modelling
- 46 Scope of this chapter
- 46 Caveat
- 46 HOW PARTITION COEFFICIENTS ARE MEASURED 47 Phenocrust/matrix studies of natural
- 47 Phenocryst/matrix studies of natural samples
 - 8 Experimental measurement of partition coefficients

49	Basic experimental approach
49	Equilibrium
50	Percent level doping technique
53	Beta-track mapping technique
54	Other experimental approaches
54	Henry's law: The applicability of percent-level doping results
55	FACTORS GOVERNING MINERAL/MELT PARTITIONING
55	Ionic size and charge of trace element
57	Crystal field effects
59	Crystallographic versus defect sites: The Henry's law question
60	Phase compositions
62	Oxidation state
64	THERMODYNAMIC RELATIONSHIPS: DEPENDENCE OF PARTITIONING ON
	TEMPERATURE AND COMPOSITION
65	Other predictive approaches
67	SPECIAL APPLICATIONS
67	Eu as an oxygen fugacity indicator
69	Origin of the Eu anomaly in lunar mare basalts
71	REE PARTITION COEFFICIENT PATTERNS FOR THE MAJOR MINERALS
71	Plagioclase
72	Olivine
72	Pyroxene
73	Low-Ca pyroxene
73	High-Ca pyroxene
73	Garnet
73	FUTURE DIRECTIONS
74	ACKNOWLEDGMENTS
74	REFERENCES

G. N. Hanson

AN APPROACH TO TRACE ELEMENT MODELING USING A SIMPLE IGNEOUS SYSTEM AS AN EXAMPLE

- 79 INTRODUCTION
- 80 **REVIEW OF TRACE ELEMENT EQUATIONS**
- 81 Melting
- 84 Fractional crystallization
- 85 Melting versus fractional crystallization Essential structural constituents
- 86
- 88 EXAMPLE OF PETROGENETIC APPROACH
- 96 DISCUSSION AND SUMMARY
- 97 ACKNOWLEDGMENTS
- 97 REFERENCES

Chapter 5

W. F. McDonough & F. A. Frey **RARE EARTH ELEMENTS IN UPPER MANTLE ROCKS**

- 99 INTRODUCTION
- 100 MASSIVE PERIDOTITES
- 102 Massive peridotites: dominantly lherzolite
- 102
- Western Alps Lanzo Western Alps Baldissero, Balmuccia 105
- 105 Eastern Liguria, Italy
- Western Liguria, Italy 106
- Eastern Pyrenees France 106

106	Ronda, Spain
107	Effects of late stage alteration on REE
108	What can be inferred about the melting process and the segregated melts?
109	Massive peridotites: pyroxenite layers and veins and their wall rocks
109	Amphibole-bearing pyroxenite veins
109	Anhydrous pyroxenite layers
112	How were the pyroxenite layers created? Evidence for multistage
	processes
113	Implications for mantle enrichment processes (metasomatism)
115	Massive peridotites: dominantly harzburgite
115	Oceanic peridotites
118	ULTRAMAFIC XENOLITHS
119	Group I spinel peridotites
125	Garnet peridotites
127	Pyroxenite and related xenoliths
128	Models for REE abundance trends in peridotite xenoliths
130	MEGACRYSTS, MINERALS IN XENOLITHS AND DIAMOND INCLUSIONS
131	Megacrysts
132	Minerals in peridotites and pyroxenites
134	Inclusions in diamonds
134	SUMMARY: COMPARISON OF PERIDOTITES FROM MASSIFS AND XENOLITHS
	AND IMPLICATIONS OF REE DATA FOR UPPER MANTLE COMPOSITION
129	A CVN/OWLEDGMENTS

- 138 ACKNOWLEDGMENTS
- 139 REFERENCES

R. I. Grauch

RARE EARTH ELEMENTS IN METAMORPHIC ROCKS

- 147 INTRODUCTION
- 147 REE RESIDENCE IN METAMORPHIC ROCKS
- 154 REE MOBILITY DURING METAMORPHISM
- 157 REE CONTENT OF METAMORPHIC ROCKS
- 160 SUGGESTIONS FOR FUTURE WORK
- 161 ACKNOWLEDGMENTS
- 161 REFERENCES

Chapter 7

S. M. McLennan

RARE EARTH ELEMENTS IN SEDIMENTARY ROCKS: INFLUENCE OF PROVENANCE AND SEDIMENTARY PROCESSES

- 169 INTRODUCTION
- RARE EARTH ELEMENT PROPERTIES AND SEDIMENTARY ROCKS 169
- 171 Cosmochemical considerations
- 171 Geochemical considerations
- 173 Aqueous geochemistry
- 175 Normalizing and notation
- SEDIMENTARY PROCESSES 176
- 176 Weathering
- 177 Diagenesis
- Sedimentary sorting 179
- **REE AND PROVENANCE STUDIES** 184
- 184 Sedimentary rocks and crustal abundances
- 185 Sedimentation and plate tectonics
- 188 Archean sedimentary rocks and the Archean crust 190
 - Archean greenstone belts

191

High grade terranes

191 Archean/Proterozoic transition 194 REE IN SEDIMENTARY ROCKS AND CRUSTAL EVOLUTION

- 195 ACKNOWLEDGMENTS
- 196 REFERENCES

Chapter 8

D. G. Brookins

AQUEOUS GEOCHEMISTRY OF RARE EARTH ELEMENTS

- 201 INTRODUCTION
- 201 THE TRIVALENT LANTHANIDES (Ln III)
- 203 Types of complexes in solution
- 206 Hydrolysis products
- 206 Phosphate complexes
- 206 Carbonate complexes
- 209 Halide complexes
- 209 Complexes with total dissolved sulfur
- 210 GADOLINIUM-TERBIUM FRACTIONATION?
- 211 SCANDIUM AND YTTRIUM
- 211 EUROPIUM (II)
- 211 CERIUM (IV)
- 213 Eh-pH DIAGRAMS
- 213 Cerium
- 213 Europium
- 213 Other lanthanides
- 215 LANTHANIDES IN OCEAN WATERS
- 220 LANTHANIDES AND ACTINIDES
- 221 CONCLUDING REMARKS
- 222 ACKNOWLEDGMENTS
- 223 REFERENCES

Chapter 9

L. A. Haskin

RARE EARTH ELEMENTS IN LUNAR MATERIALS

- 227 INTRODUCTION
- 227 THE NATURE OF PLANET MOON
- 229 THE MAGMA OCEAN HYPOTHESIS AND ITS PRESUMED PRODUCTS
- 230 LUNAR REE PATTERNS
- 231 Highland plutonic rocks
- 231 Anorthosites
- 233 Dunites, troctolites, norites, and gabbros
- 236 Lunar felsite (granite)
- 236 Highland volcanic rocks: KREEP
- 240 Mare basalts
- 241Mare basalt sources as magma ocean products245Assimilation of crustal material during basalt petrogenesis245Glassy spherules
- 245 Soils and breccias
- 252 Caveat
- 252 ACKNOWLEDGMENTS
- 252 REFERENCES

COMPOSITIONAL AND PHASE RELATIONS AMONG RARE EARTH ELEMENT MINERALS

- 259 INTRODUCTION
- 259 GEOCHEMICAL BACKGROUND
- 260 MINERALS
- 265 COUPLED SUBSTITUTIONS
- 268 VECTOR TREATMENT
- 269 APPLICATION TO SELECTED MINERAL GROUPS
- 269 Fluorides
- 271 Carbonates
- 272 Fluorocarbonates
- Monazite, xenotime, zircon, and related phases 274
- 276 Apatites
- Florencite and related phases 281
- 281 A-B oxides (niobates, tantalates, titanates, ferrites) 284
 - Fergusonite/beta fergusonite, ABO4
- 284 Perovskite, ABO3
- Aeschynite/euxenite, AB2O6 284
- Pyrochlore, A1.2B2O6(O,F,OH) 285
- 289 Allanite
- 291 Titanite
- 293 Garnet
- 293 Gadolinite
- 296 Chevkinite/perrierite
- ELEMENT DISTRIBUTIONS: ACID-BASE RELATIONS 299
- 301 SUMMARY
- 302 ACKNOWLEDGMENTS
- 302 REFERENCES

Chapter 11

A. N. Mariano

ECONOMIC GEOLOGY OF RARE EARTH MINERALS

309	INTRODUCTION
312	RARE EARTH MINERALS OF ECONOMIC IMPORTANCE
312	Bastnaesite
313	Syntaxic growth in bastnaesite-type minerals
315	Öccurrence
315	Monazite
317	Occurrence
318	Britholite
320	Occurrence
320	Ancylite
321	Occurrence
322	Allanite
322	Occurrence
322	Xenotime
323	Occurrence
324	Crandallite group minerals
324	Occurrence
326	By-product yttrium from Elliot Lake
326	By-product REE from loparite
326	By-product REE from apatite
328	By-product REE from anatase
328	By-product REE and Y from eudialyte

330	CLASSIFICATION OF REE DEPOSITS IN CARBONATITES
330	Primary mineralization
330	Mt. Pass, California
331	Kangankunde Hill, Malawi
331	Hydrothermal mineralization
331	Wigu Hill, Tanzania
331	Itapirapua, São Paulo, Brasil
331	Karonge, Burundi
332	Bayan Obo, China
332	Supergene REE mineralization in carbonatites
333	Araxá
333	Catalão I
333	Carbonatites of the Amazon
333	Mt. Weld
334	CONCLUSIONS
334	ACKNOWLEDGMENTS

334 REFERENCES

Appendix

A. N. Mariano

CATHODOLUMINESENCE EMISSION SPECTRA OF RARE EARTH ELEMENT ACTIVATORS IN MINERALS

- 339 INTRODUCTION
- [Twenty-five spectra of minerals from many localities worldwide.] REFERENCES 339 348