THE Al₂SiO₅ POLYMORPHS

TABLE OF CONTENTS

Page

- ii Copyright; Additional Copies
- iii Dedication; Foreword
- iv Preface and Acknowledgments
- xi List of Symbols

1. INTRODUCTION

- 1 FACIES SERIES AND BARIC REGIMES
- 6 TECTONIC-METAMORPHIC ANALYSIS OF METAMORPHIC BELTS
- 6 CALIBRATION OF OTHER GEOTHERMOMETERS AND GEO BAROMETERS
- 11 RATIONALE FOR TOPICAL ORGANIZATION OF SUCCEEDING CHAPTERS

2. CRYSTAL STRUCTURES, OPTICAL AND PHYSICAL PROPERTI

- 13 INTRODUCTION
- 14 ANDALUSITE
- 14 Crystal structure
- 14 Optical properties
- 21 Thermal expansion, compressibility and elasticity
- 26 SILLIMANITE
- 26 Crystal structure
- 28 Optical properties
- 38 Thermal expansion, compressibility and elasticity
- 30 KYANITE
- 30 Crystal structure
- 34 Optical properties
- 34 Thermal expansion

3. PHASE EQUILIBRIA

37	INTRODUCTION
40	EXPERIMENTAL HYDROTHERMAL STUDIES
40	Experiments of Evans (1965)
43	Experiments of Newton (1966a,b)
43	Kyanite-andalusite equilibrium
43	Kyanite-sillimanite equilibrium
45	Al ₂ SiO ₅ phase equilibrium diagram of Newton (1966a)
45	Critique of Newton's (1966a,b) experiments
47	Experiments of Richardson et al. (1968) and Richardson et al.
	(1969)
47	Kyanite-sillimanite equilibrium
47	Kyanite-andalusite equilibrium
47	Andalusite-sillimanite equilibrium
49	Al ₂ SiO ₅ phase equilibrium diagram of Richardson et al. (1969)
49	Critique of the experiments of Richardson et al. (1968) and
	Richardson et al. (1969)
55	Experiments of Holdaway (1971)
55	Kyanite-andalusite equilibrium
56	Andalusite-sillimanite equilibrium
57	Al ₂ SiO ₅ phase equilibrium diagram of Holdaway (1971)
57	Critique of Holdaway's (1971) experiments
61	Experiments of Brown and Fyfe (1971)
62	Al ₂ SiO ₅ phase equilibrium diagram of Brown and Fyfe (1971)
64	Critique of Brown and Fyfe's (1971) experiments
65	Experiments of Bowman (1975)
65	Experiments at 0.5 kbar
67	Experiments at 2 kbar
67	Al ₂ SiO ₅ phase equilibrium diagram of Bowman (1975)
70	Critique of Bowman's (1975) experiments
71	Experiments of Heninger (1984)
72	Critique of Heninger's (1984) experiments
73	Experiments of Bohlen et al. (ms.)
74	SOLUBILITY STUDIES AT ATMOSPHERIC PRESSURE
74	Experimental study of Weill (1966)
77	Al ₂ SiO ₅ phase equilibrium diagram of Weill (1966)
77	Experiments of Bowman (1975)
79	Critique of the experimental results of Weill (1966) and
	Bowman (1975)

80	CALORIMETRIC STUDIES
81	Heat capacities and vibrational entropies
85	Solution calorimetry
88	ANALYSIS OF Al ₂ SiO ₅ PHASE EQUILIBRIA UTILIZING
	THERMODYNAMICALLY CONSISTENT DATA SETS
97	CALIBRATION OF THE Al ₂ SiO ₅ PHASE EQUILIBRIA WITH
	MINERAL PARAGENETIC DATA
105	SUMMARY AND CONCLUSIONS
107	OTHER EQUILIBRIA IN THE Al2SiO5 SYSTEM
109	EPILOGUE
	4. NON-STOICHIOMETRY
111	MAJOR ELEMENT NON-STOICHIOMETRY
111	Crystal chemistry of sillimanite-mullite solid solution
113	Evidence for sillimanite-mullite solid solution
120	Thermodynamic analysis of sillimanite-mullite solid solution
121	MINOR ELEMENT NON-STOICHIOMETRY
121	Transition elements
121	
124	
134	
137	Thermodynamic analysis of transition element solid solution
143	Partitioning of transition elements between coexisting polymorphs
156	Zoning of transition elements
162	Boron
165	Hydroxyl
168	Other elements
	5. LATTICE DEFECTS
169	POINT DEFECTS
170	Intrinsic point defects
171	Extrinsic point defects
172	LINE DEFECTS

178 PLANAR DEFECTS 178 Stacking faults

Antiphase boundaries

Grain boundaries

Twinning and kink bands in kyanite

179

181 184

6. AI/SI DISORDER IN SILLIMANITE

- 187 THERMODYNAMIC MODELING
- 189 PHASE EQUILIBRIUM EXPERIMENTS
- 196 EXPERIMENTAL HEAT TREATMENT
- 199 NATURAL SILLIMANITE AND FIBROLITE
- 199 X-ray diffraction
- 200 Neutron diffraction
- 201 Spectroscopic studies

7. THE FIBROLITE PROBLEM

- 207 INTRODUCTION
- 207 EXPERIMENTAL HYDROTHERMAL STUDIES
- 209 CALORIMETRIC STUDIES
- 211 NON-STOICHIOMETRY
- 214 LATTICE DEFECTS
- 214 Al-Si DISORDER
- 216 GRAIN BOUNDARY ENERGY
- 220 CONCLUSIONS

8. METAMORPHIC REACTIONS

- 223 INTRODUCTION
- 223 THE KYANITE → SILLIMANITE REACTION
- 230 THE ANDALUSITE → SILLIMANITE REACTION
- 236 THE KYANITE → ANDALUSITE REACTION
- 241 THE ANDALUSITE → KYANITE REACTION
- 243 REACTIONS INVOLVING FIBROLITE
- 246 Some fibrolite-forming reaction mechanisms
- 246 Base cation leaching
- 249 Deformation-induced fibrolitization
- 252 Aluminum metasomatism
- 253 RETROGRADE ALTERATION (REPLACEMENT) REACTIONS

9. REACTION KINETICS AND CRYSTAL GROWTH MECHANISMS

- 257 INTRODUCTION
- 257 EXPERIMENTAL REACTION KINETICS

- 261 FIELD EVIDENCE FOR REACTION KINETICS
- 271 Strain-assisted reactions
- 273 FIBROLITE METASTABILITY
- 273 Contact metamorphism
- 276 Regional metamorphism
- 296 Implications for an equilibrium model
- 296 KINETIC MODELING OF POLYMORPHIC REACTIONS
- 302 CHIASTOLITE: CRYSTAL GROWTH MECHANISMS

10. ALUMINUM METASOMATISM

- 311 INTRODUCTION
- 312 Al₂SiO₅-BEARING VEINS AND SEGREGATIONS FORMED BY REPLACEMENT
- 325 Al₂SiO₅-BEARING VEINS AND SEGREGATIONS FORMED BY CRYSTALLIZATION WITHIN FRACTURES AND CAVITIES
- 330 Al₂SiO₅-bearing segregations in the Lepontine Alps, Switzerland: a case study
- 344 Kyanite-bearing veins in eclogites
- 346 FIBROLITE AND ALUMINUM METASOMATISM
- 352 EPILOGUE

11. ALUMINUM SILICATES IN ANATECTIC MIGMATITES AND PERALUMINOUS GRANITOIDS

- 353 INTRODUCTION
- 353 ANATECTIC MIGMATITES
- 354 PERALUMINOUS GRANITOIDS
- 359 MAGMATIC PEGMATITES
- 363 REFERENCES