REACTIVE TRANSPORT IN POROUS MEDIA

TABLE OF CONTENTS, RIM VOLUME 34

	Page
Foreword	iii
Preface	iii

Chapter 1

P. C. Lichtner

CONTINUUM FORMULATION OF MULTICOMPONENT-MULTIPHASE REACTIVE TRANSPORT

Introduction	1
Continuum Hypothesis	2
Darcy's Law.	- 4
General Conservation Law	5
Conservation of mass	7
Partially saturated porous medium	8
Solids	8
Conservation of energy	9
Chemical Reactions.	10
The law of definite proportions	10
Source/sink term	12
Reaction rates	14
Homogeneous reactions	14
Heterogeneous reactions—moving boundary problem	14
Surface area	16
Boundary layer	17
Local chemical equilibrium	18
Multicomponent Reactive Transport Equations	18
Canonical form.	19
Thermodynamic databases.	22
Relation between source terms	23
Local partial equilibrium	23
Linearly dependent reactions	27
Multicomponent Reactive Transport Equations	28
Pure liquid fluid phase	29
Ion-exchange reactions.	30
Two-phase fluid flow	32
Multicomponent systems	35
Richards equation	35
Physical interpretation of the generalized concentration and flux	36
Example: Partitioning between aqueous and gaseous phases	- 38
Asymptotics, Local Equilibrium and Ghost Zones	40
Scaling	40
Ghost zones	43
Quasi-stationary State Approximation	- 44
Single Component System.	47
Transient formulation	47
Transient and stationary state solution	48
Quasi-stationary state approximation	50
Analytical solution	51
Special Topics	52

Charge conservation	- 52
Species-dependent diffusion coefficients	54
Charge conservation and sorption	56
Ion-exchange	56
Surface complexation model	57
Multicomponent system	58
Interpreting results of reactive transport simulations	59
Inverse problem.	61
Applications	62
Application to acid mine drainage and pyrite oxidation	63
Poços de Caldas redox front migration—The presence of a gap	67
Heterogeneous porous media	71
Reaction instability	74
Hydrothermal system	76
Concluding Remarks.	77
Acknowledgments.	78
References	79

C. I. Steefel and K. T. B. MacQuarrie

APPROACHES TO MODELING OF

REACTIVE TRANSPORT IN POROUS MEDIA

Reaction Algorithms for Multicomponent Systems 85 Mathematical descriptions of reaction systems 85 Dependent chemical reactions 89 Including equilibrium reactions 90 Treatment of Temporal Derivatives 91 Formulating and Solving the Chemical Reaction Equations 93 Fully kinetic formulations 93 Simulating mixed equillibrium-kinetic systems with kinetic 94
Mathematical descriptions of reaction systems. 85 Dependent chemical reactions 89 Including equilibrium reactions 90 Treatment of Temporal Derivatives 91 Formulating and Solving the Chemical Reaction Equations 93 Fully kinetic formulations. 93 Simulating mixed equillibrium-kinetic systems with kinetic 94
Dependent chemical reactions
Including equilibrium reactions
Treatment of Temporal Derivatives 91 Formulating and Solving the Chemical Reaction Equations 93 Fully kinetic formulations 93 Simulating mixed equillibrium-kinetic systems with kinetic formulations 94
Formulating and Solving the Chemical Reaction Equations 93 Fully kinetic formulations. 93 Simulating mixed equillibrium-kinetic systems with kinetic formulations. 94
Fully kinetic formulations. 93 Simulating mixed equillibrium-kinetic systems with kinetic formulations. 94
Simulating mixed equillibrium-kinetic systems with kinetic formulations
formulations
Numerical packages for fully kinetic formulations
Mixed kinetic-equilibrium (DAE) systems
Decoupled approaches for mixed kinetic-equilibrium systems
Modeling equilibrium systems
Including mineral equilibria
Changing basis sets
Solving equilibrium problems with minimization methods 100
Solving the nonlinear equations 100
Newton-Raphson method 100
Computing the Jacobian matrix 102
Modeling Transport Processes
Finite difference methods for spatial discretization
Finite difference approximations 103
Grid Peclet number 105
Courant number
Amplitude and phase errors 106
Finite element methods for spatial discretization
High-resolution spatial schemes 109
Example of reactive transport in a physically heterogeneous
porous media 110
Methods for Coupling Reaction and Transport 110
One-step or global implicit approach
Sequential non-iterative approach (SNIA) 113

Sequential iteration approach (SIA)	Strang splitting	114
Potential numerical problems with the SIA method. 115 Comparison of coupling schemes. 116 Example involving first-order decay. 116 Example involving equilibrium adsorption. 116 Example involving Monod-kinetics. 117 Example of multicomponent aqueous and surface complexation. 120 Summary of results from method comparisons. 121 Summary. 124 Acknowledgments. 125 References. 125	Sequential iteration approach (SIA)	114
Comparison of coupling schemes. 116 Example involving first-order decay. 116 Example involving equilibrium adsorption. 116 Example involving Monod-kinetics. 117 Example of multicomponent aqueous and surface complexation. 120 Summary of results from method comparisons. 121 Summary. 124 Acknowledgments. 125 References. 125	Potential numerical problems with the SIA method	115
Example involving first-order decay 116 Example involving equilibrium adsorption 116 Example involving Monod-kinetics 117 Example of multicomponent aqueous and surface complexation 120 Summary of results from method comparisons 121 Summary 124 Acknowledgments 125 References 125	Comparison of coupling schemes	116
Example involving equilibrium adsorption. 116 Example involving Monod-kinetics. 117 Example of multicomponent aqueous and surface complexation. 120 Summary of results from method comparisons. 121 Summary. 124 Acknowledgments. 125 References. 125	Example involving first-order decay	116
Example involving Monod-kinetics	Example involving equilibrium adsorption	116
Example of multicomponent aqueous and surface complexation 120 Summary of results from method comparisons	Example involving Monod-kinetics	117
Summary of results from method comparisons	Example of multicomponent aqueous and surface complexation	120
Summary 124 Acknowledgments 125 References 125	Summary of results from method comparisons	121
Acknowledgments	Summary	124
References	Acknowledgments	125
	References	125

E. H. Oelkers

PHYSICAL AND CHEMICAL PROPERTIES OF ROCKS AND FLUIDS FOR CHEMICAL MASS TRANSPORT CALCULATIONS

Introduction	131
Permeability or Hydraulic Conductivity	131
(Glossary of major symbols)	132
Permeability in sedimentary rocks	136
Permeability in igneous and metamorphic rocks	144
Permeability as a function of pressure and temperature	
in crystalline rocks	146
Aqueous Diffusion	147
Tortuosity and formation factors	147
Diffusional transport in electrolyte solutions	148
Estimation of aqueous tracer diffusion coefficients	152
Uphill and downhill diffusion in electrolyte solutions	156
Mechanical and Hydrodynamic Dispersion	157
Laboratory scale dispersion	158
Field scale dispersion (Macrodispersion)	162
Rates of Mineral/Water Interactions.	166
Reactive surface area	168
Variation of mineral dissolution/crystallization rates with chemical affinity	169
Variation of dissolution rates as a function of pH	177
Variation of rates in the presence of organic acids	180
Conclusions	181
Acknowledgments	182
References	182

Chapter 4

C. A. J. Appelo

MULTICOMPONENT ION EXCHANGE AND CHROMATOGRAPHY IN NATURAL SYSTEMS

Introduction	
Exchange Equilibria and Calculations	
Exchange equations	
Determination of exchangeable cations	
Chromatographic Patterns	
Single solute transport, broadening fronts	
Sharp fronts	
•	

Two-cation exchange	
Column elution curves	
Sorption isotherms from elution curves	
Multicomponent Chromatography	
Self-similar solution	
Field Examples of Ion Chromatography	
The case by Valocchi et al. (1981)	
Side reactions in the Valocchi case	
Inverting water compositions	
Effects of salinity pulses	
Freshening of saline aquifers	
Summary	223
(Symbols)	224
Acknowledgments	224
References	225

D. L. Suarez and J. Šimůnek

SOLUTE TRANSPORT MODELING UNDER VARIABLY SATURATED WATER FLOW CONDITIONS

• · · ·	
Introduction	
Unsaturated Water Flow	
Governing equation	229
Hydraulic characteristics	230
Chemical effects on hydraulic conductivity	231
Root Water Uptake and Root Growth	234
Root growth	235
Heat Transport	
Concentration/Production/Transport of Carbon Dioxide	
Carbon dioxide production	
Carbon dioxide transport.	
Reactive Single Component Solute Transport	241
Local equilibrium models	241
Nonequilibrium models	241
Counled Water Flow and Multicomponent Models	244
Equilibrium models	244
Generalized models	246
Models with specified chemistry	240
INSATCHEM Chemical Model	249
Calcita pracinitation	249
Draginitation of gyneum	251
Magnazium prozinitation	251
Provinitation of receptation	
Precipitation of nesquenomie and nyuromagnesite	
Precipitation of septonte	
Silicate weathering	
Cation exchange	
Anion adsorption	256
Example Simulations Using UNSATCHEM	
Future Developments	
References	

- - -

REACTIVE TRANSPORT IN HETEROGENEOUS SYSTEMS:

AN OVERVIEW

Introduction	269
Some Background from a Hydrologic Perspective	270
Typical setting	270
Hydrologic impacts of heterogeneity	271
Describing and measuring spatial heterogeneity	274
Correlating random fields	275
Example	277
Other SRF methods	277
Depositional and other geometric models	278
Dealing with physical heterogeneity	278
Homogenization	278
Direct simulation	279
The Concept of Chemical Heterogeneity	280
Reactions in porous media	280
Reactions and heterogeneity	281
Example 1: Chemical heterogeneity and the aqueous geochemistry	282
Scenario 1	282
Scenario 2	282
Scenario 3	282
Example 2: Chemical heterogeneity and contaminant mobility	283
Sorption and retardation	283
Chemical heterogeneity and sorption	284
Chemical heterogeneity impacts	287
Looking at the Role of Multicomponent Systems	288
A more complicated example system	288
Approximate geochemical model	289
Equilibrium speciation	291
Transport formulation and simulations	293
Simulation strategy	294
Basic configuration	295
Modified correlation	295
Modified goethite distribution	297
Modified source composition	297
A final remark	300
A Field Example Involving Bioremediation	303
Biostimulation	304
Bioaugmentation	304
Bioaugmentation field test	305
Summary	308
Acknowledgments	308
References	308

Chapter 7

B. E. Rittmann & J. M. VanBriesen

MICROBIOLOGICAL PROCESSES IN REACTIVE MODELING

Introduction	
Microbiological Reactions	
Primary metabolism	
Special status of oxygen	
Secondary utilization	

Kinetics	
Active biomass	
Electron-acceptor substrate	
Creating mass balance equations	
Macroscopic versus biofilm modeling.	320
Chemical Reactions Related to Subsurface Microbiology	320
Acid, base and complexation reactions	
Interactions between bulk phase reactions and biodegradation	
Modeling bulk phase reactions	
Additional chemical reactions in the subsurface	
Modeling Examples	
Conclusions.	
Acknowledgments.	
References	332

P. Van Cappellen and J.-F. Gaillard

BIOGEOCHEMICAL DYNAMICS IN AQUATIC SEDIMENTS

Introduction	335
Aquatic Sediments: Background	336
Aquatic sediments as porous media	336
Aquatic sediments as biogeochemical reactors	337
Spatial and temporal scales of early diagenesis	339
Trends in field studies	340
Early Diagenetic Modeling	
Historical perspective	
The continuum approach	
Recipe for a multicomponent early diagenetic model	
Transport Processes in Aquatic Sediments	
Ionic and molecular diffusion	
Molecular diffusion: The Stokes-Einstein equation	
Ionic diffusion: The multicomponent approach	
Limiting cases	
Porosity and tortuosity	
Biological mixing	
Irrigation	
Chemical Processes in Aquatic Sediments	
Kinetics of organic matter degradation	
Monod kinetics	
Inhibition and competition	
A kinetic model for organic matter degradation	
Secondary reactions	
Continuity Equations	368
Application	369
Conclusions	
Acknowledgments	
References	

REACTIVE TRANSPORT MODELING OF ACIDIC METAL-CONTAMINATED GROUND WATER AT A SITE WITH SPARSE SPATIAL INFORMATION

Introduction	377
Inverse Geochemical Modeling, Basic Theory	378
Mathematical formulation: Inverse modeling with the NETPATH	
computer code	378
Inverse modeling accounting for uncertainties, water and proton mass-	
balances: The PHREEQC code	380
Assumptions used in inverse modeling	382
Knowledge of flowpaths and the assumption of a steady-	
state ground-water flow field	382
The assumption of chemical steady-state	383
How does "mixing" occur in ground-water systems?	384
Forward Geochemical Modeling: The PHREEQM and PHREEQC Reactive	
Transport Codes	385
The Pinal Creek Basin Site: Brief Description	387
Geology	389
Geohydrology	390
Inverse Geochemical Modeling at the Pinal Creek Site	390
Inverse modeling with NETPATH	391
Examination of end-member waters and their conservative	201
constituents	391
The thermodynamic state of the end-member waters	392
NETPATH inverse modeling: First simulation results	394
The second NETPATH simulation	270
The Inito NETPATH simulation	200
The fifth and sixth NETDATH simulations	390
Conclusions from the NETDATH simulations.	400
Lonciusions from the NETPATH simulations	400
Peactive Transport Modeling at the Dinal Creak Site	400
The ground-water velocity field	405
Transport processes and contaminant dilution	406
First simulation example: The Brown (1996) 1-D reactive transport model	100
for the Pinal Creek basin	407
Second simulation example: The Glynn Engesgaard and Kinn (1991)	
1-D reactive transport model	408
A 1-D reactive-transport sensitivity analysis on the movement of	
pH- and pe-controlling mineral fronts.	412
A simple model for advective reactive transport of a	
dissolution front: The MnO ₂ dissolution front	414
Determination of the initial MnO_2 and carbonate mineral	
concentrations	415
Setup of the 1-D reactive transport simulations	416
Simulation results: Movement of the Fe(II)-	
rich waters and of the MnO ₂ dissolution front	418
Simulation results: Evolution of the low-pH waters	419
The effect of the initial carbonate to initial MnO ₂ ratio on the	
evolution of the low-pH waters	421
Influence of the aluminum mineral allowed to precipitate on the	
evolution of the low-pH waters	422

Effects of the irreversible dissolution of Ca- and Mg-silicates	
on the evolution of low-pH Fe(II)-rich waters	424
The effect of not allowing rhodochrosite precipitation	425
The CO ₂ open system simulations	427
The effect of longitudinal dispersion	427
The influence of ion exchange and surface-complexation	
sorption processes	428
Other minor effects on the evolution of the low-pH waters	430
Comparison of the reactive transport simulation results with	
observations at the Pinal Creek site	431
How to obtain U.S. Geological Survey computer	
codes and the PHREEQM code	436
Conclusions	433
Acknowledgments	436
References	436