WATER *in* NOMINALLY ANHYDROUS MINERALS

62 Reviews in Mineralogy and Geochemistry 62

TABLE OF CONTENTS

Analytical Methods for Measuring Water in Nominally Anhydrous Minerals

George R. Rossman

INTRODUCTION	1
ANALYTICAL METHODS	2
Early infrared studies	2
Quantitative IR methods	
Mineral specific calibrations	8
Thermogravimetric methods	
P ₂ O ₅ cell coulometry	9
Hydrogen extraction with uranium reduction methods	
Nuclear methods for hydrogen determination	
Nuclear magnetic resonance	
Secondary ion mass spectrometry (SIMS)	
PREVIOUS REVIEWS OF METHODS	
SURFACE WATER	
CURRENT STATUS OF CALIBRATIONS	
GLASSES	
ACKNOWLEDGMENTS	
REFERENCES	

2

1

The Structure of Hydrous Species in Nominally Anhydrous Minerals: Information from Polarized IR Spectroscopy

Eugen Libowitzky and Anton Beran

INTRODUCTION	
The importance of hydrous species in NAMs	
Why use IR spectroscopy?	
History	
CONCEPTS OF INFRARED SPECTROSCOPY	
Introduction to IR spectroscopy	
Sample requirements	

Experimental equipment	32
QUANTITATIVE DATA FROM INFRARED SPECTROSCOPY	
The distance - frequency correlation of hydrogen bonds	
The spatial orientation of hydrous species	
Total absorbance: a first step towards quantitative water analysis	
CONCEPTS OF STRUCTURAL MODELS FROM INFRARED DATA	
Charge balance and substitution	
Electrostatic considerations on defect geometry	
Space requirements: ideal and distorted models	
Influence on band energies from cation substitution	
Discrimination among hydrous defects	
Deuteration	40
EXAMPLES	40
Vesuvianite: orientation and hydrogen bonding of hydroxyl groups	40
Hydrogarnet substitution - the (OH) ₄ ⁴⁻ cluster	41
Water molecules in structural cavities: beryl and cordierite	43
OH substitution in topaz	44
OH incorporation in diopside	44
OH defects in perovskite	47
OH traces in corundum	48
ACKNOWLEDGMENTS	49
REFERENCES	49

Structural Studies of OH in NominallyAnhydrous Minerals Using NMR

Simon C. Kohn

INTRODUCTION	53
PRINCIPLES OF SOLID STATE NMR	54
Positions of ¹ H MAS NMR resonances	55
Widths of 'H MAS NMR resonances	55
Intensity of ¹ H MAS NMR resonances	56
APPLICATION OF 'H MAS NMR TO NOMINALLY ANHYDROUS MINERALS	58
Attractive features of 'H MAS NMR for studies of NAMs	58
Problems and difficulties in applying 'H MAS NMR to NAMs	58
¹ H MAS NMR studies of orthopyroxene	59
¹ H MAS NMR studies of clinopyroxene	60
¹ H MAS NMR studies of olivine	60
¹ H MAS NMR studies of garnet	61
¹ H MAS NMR studies of SiO ₂ polymorphs	61
¹ H MAS NMR studies of feldspars and other aluminosilicate framework minerals	
¹ H MAS NMR studies of wadsleyite	
NON-SPINNING 'H NMR EXPERIMENTS	62
STUDIES OF OTHER NUCLEI IN NAMS	
PROSPECTS FOR FUTURE DEVELOPMENT OF NMR FOR STUDIES OF NAMS	
ACKNOWLEDGMENTS.	
REFERENCES	

Atomistic Models of OH Defects in Nominally Anhydrous Minerals

Kate Wright

INTRODUCTION	67
POINT DEFECTS IN MINERALS	67
THEORETICAL BACKGROUND	69
Quantum mechanical methods	69
Classical methods	
Treatment of defects	71
OH DEFECTS IN MANTLE SILICATES	72
The Mg ₂ SiO ₄ polymorphs	73
Pyroxene	79
GENERAL REMARKS AND FUTURE DIRECTIONS	80
ACKNOWLEDGMENTS	
REFERENCES	

5

Hydrogen in High Pressure Silicate and Oxide Mineral Structures

Joseph R. Smyth

INTRODUCTION	
GEOCHEMISTRY OF H	
CRYSTAL CHEMISTRY OF H	
NOMINALLY HYDROUS HIGH-PRESSURE SILICATE PHASES	
Brucite	90
Serpentine	
Talc	
True micas	
Chlorite	
Amphiboles	
Lawsonite	
Epidote	
Humite	94
Clinohumite	94
Chondrite	
Phase A	95
Phase B	96
Superhydrous Phase B	96
Phase D	96
Phase E	97
Phase Pi	97
Тораг-ОН	98
Phase Egg	98
K-cymrite	98

NOMINALLY ANHYDROUS HIGH-PRESSURE SILICATE AND OXIDE PHASES9	9 9
Periclase-wüstite	99
Corundum	9 9
Coesite	01
Stishovite and rutile	01
Pyroxenes10	02
Akimotoite10	
Garnet	04
Olivine	04
Wadsleyite10	
Wadsleyite II10	
Ringwoodite10)6
Anhydrous phase B10	07
Kyanite	
Perovskite10	08
Post-perovskite10	98
Zircon10	09
Titanite	10
CONCLUSIONS11	10
ACKNOWLEDGMENT	10
REFERENCES	

Water in Nominally Anhydrous Crustal Minerals: Speciation, Concentration, and Geologic Significance

Elizabeth A. Johnson

INTRODUCTION	117
Importance of nominally anhydrous minerals in the crust	
Scope and goals of this chapter	
HYDROUS SPECIES AND CONCENTRATIONS IN CRUSTAL MINERALS	
Quartz and coesite	
Feldspars and nepheline	
Pyroxenes	
Garnets	
Al ₂ SiO ₅ polymorphs	
Rutile and cassiterite	126
Zircon and titanite	
Cordierite and beryl	
UNDERSTANDING GEOLOGIC SYSTEMS	
Thermodynamic properties	
Physical properties	
The water budget of the Earth	
SUMMARY AND FUTURE POSSIBILITIES	
ACKNOWLEDGMENTS	
REFERENCES	
APPENDIX	
Studies of hydrogen in quartz.	

Geological studies of H ₂ O and CO ₂ in cordierite.	143
Hydrous species in feldspars.	
Structural hydroxyl concentrations in crustal and mantle pyroxenes	146
Structural hydroxyl concentrations in crustal garnets.	148
Structural hydroxyl concentrations in kyanite	152
Structural hydroxyl concentrations in sillimanite.	
Structural hydroxyl concentrations in rutile	
Structural hydroxyl concentrations in cassiterite.	154
Structural hydroxyl concentration in andalusite Structural hydroxyl concentrations in rutile Structural hydroxyl concentrations in cassiterite	153

Water in Natural Mantle Minerals I: Pyroxenes

Henrik Skogby

INTRODUCTION	
OH ABSORPTION BANDS IN IR SPECTRA	
Diopside	
Augite	
Omphacite	
Orthopyroxene	
Absorption from inclusions	
CORRELATIONS OF OH AND SAMPLE CHEMISTRY	
WATER CONCENTRATION IN MANTLE PYROXENES	
IMPLICATIONS FOR WATER IN THE UPPER MANTLE	
ACKNOWLEDGMENTS	
REFERENCES	

8

Water in Natural Mantle Minerals II: Olivine, Garnet and Accessory Minerals

Anton Beran and Eugen Libowitzky

INTRODUCTION	
OLIVINE	
Basic structure and possible sites of hydrogen incorporation	
Defect types in mantle-related olivines from different localities	
Calibration approaches and summary of hydrogen contents	
GARNET	
Structural and spectral features	
Calibration and hydrogen content	
ACCESSORY MINERALS	
Kyanite	
Rutile	
Coesite	
Spinel	
Zircon	
ACKNOWLEDGMENTS	
REFERENCES	

9 Thermodynamics of Water Solubility and Partitioning

Hans Keppler and Nathalie Bolfan-Casanova

INTRODUCTION	193
BASIC THERMODYNAMICS OF WATER SOLUBILITY AND PARTITIONING	194
The meaning of the term "water solubility"	194
Thermodynamics of water solubility	195
Relationship between water solubility and partitioning	198
EXPERIMENTAL STRATEGIES FOR MEASURING WATER SOLUBILITY AND	
WATER PARTITION COEFFICIENTS	199
Annealing experiments	199
Crystallization experiments	200
WATER IN UPPER MANTLE MINERALS	201
Water solubility in and the Al content of orthopyroxenes as "geohygrometer"	201
Water solubility in olivine	
Water solubility in garnet	
Water solubility in clinopyroxene	211
Water partitioning among upper mantle minerals	212
Water storage capacity of the upper mantle and the origin of the Earth's	
asthenosphere	214
Water recycling by subducted slabs	215
WATER IN TRANSITION ZONE MINERALS	216
Water solubility in wadsleyite and water partitioning between	
wadsleyite and olivine	216
Partitioning of water between wadsleyite and ringwoodite	219
Partition coefficients of water between other high-pressure phases	220
WATER IN MINERALS OF THE LOWER MANTLE	222
Water in ferropericlase	222
Water in magnesium silicate perovskite	223
The distribution of water at the 660 km discontinuity	225
THE EQUILIBRIUM DISTRIBUTION OF WATER IN THE EARTH'S INTERIOR	226
ACKNOWLEDGMENTS	227
REFERENCES	

10

The Partitioning of Water Between Nominally Anhydrous Minerals and Silicate Melts

Simon C. Kohn and Kevin J. Grant

INTRODUCTION	31
PARTITIONING OF WATER BETWEEN NAMS AND MELTS;	
METHODOLOGY AND APPROACH	33
Experimental studies of water partitioning between NAMs and melts	33
SUMMARY, IMPLICATIONS AND FUTURE RESEARCH	38
ACKNOWLEDGMENTS	
REFERENCES	

11 The Stability of Hydrous Mantle Phases

Daniel J. Frost

INTRODUCTION	
MANTLE METASOMATISM	
EVIDENCE FROM MANTLE XENOLITHS	
Peridotite massifs and xenoliths from alkaline basalts	
Xenoliths from kimberlites	
Mantle amphibole mineralogy	
Mantle mica mineralogy	
EXPERIMENTAL STUDIES ON THE STABILITY OF KNOWN	
MANTLE HYDROUS MINERALS	
Pargasitic amphiboles	
Apatite	
Phlogopite	
K-richterite	
EXPERIMENTAL STUDIES ON THE STABILITY OF POTENTIAL	
HIGH PRESSURE HYDROUS MANTLE MINERALS	
Phase X	
Humite and dense hydrous magnesium silicate phases	
THE STABILITY OF HYDROUS PHASES IN ULTRAMAFIC	
LITHOSPHERE AND THE CONVECTING MANTLE	
ACKNOWLEDGMENTS	
REFERENCES	

12

Hydrous Phases and Water Transport in the Subducting Slab

Tatsuhiko Kawamoto

INTRODUCTION	.273
LOW-PRESSURE HYDROUS MINERALS AND HIGH-PRESSURE	
HYDROUS PHASES	.273
STABILITY OF HYDROUS PHASES IN DOWNGOING PERIDOTITE	.277
STABILITY OF HYDROUS PHASES IN DOWNGOING	
BASALT AND SEDIMENT	.279
PRESSURE - TEMPERATURE CONDITIONS AND DEHYDRATION	
REACTIONS IN THE SUBDUCTING SLAB	.280
COMPOSITION AND DIHEDRAL ANGLES OF AQUEOUS	
FLUIDS IN MANTLE PERIDOTITE	.281
SECOND CRITICAL ENDPOINT BETWEEN MAGMAS	
AND AQUEOUS FLUID: IMPLICATIONS FOR SLAB-DERIVED COMPONENT	.282
CONCLUDING REMARKS	.285
ACKNOWLEDGMENT	.286
REFERENCES	.286

13 Diffusion of Hydrogen in Minerals

Jannick Ingrin and Marc Blanchard

INTRODUCTION	291
BASIC CONCEPTS OF DIFFUSION IN MINERALS	
EXPERIMENTAL METHODS	292
MEASUREMENT TECHNIQUES	
Infrared spectroscopy	295
Mass spectrometry	296
Thermogravimetry	297
Nuclear reaction analysis	297
Liquid scintillation counting	298
Proton-proton scattering	298
Theoretical techniques	298
DETECTION OF H DIFFUSION THROUGH ISOTOPE EXCHANGE	299
Anhydrous minerals	299
Hydrous minerals	304
EXTRACTION/INCORPORATION REACTIONS IN ANHYDROUS MINERALS	307
Olivine	307
Diopside	310
Enstatite	313
Garnets	314
Quartz	316
Feldspars	316
CONCLUSION AND FUTURE DIRECTIONS	317
ACKNOWLEDGMENTS	318
REFERENCES	

14

Effect of Water on the Equation of State of Nominally Anhydrous Minerals

Steven D. Jacobsen

INTRODUCTION	
ELASTIC PROPERTIES OF NOMINALLY ANHYDROUS MINERALS	
IN THE UPPER MANTLE	
Olivine	
Humite-group minerals along the forsterite-brucite join	
Garnet	
Grossular-hydrogrossular	
Pyroxene	
ELASTIC PROPERTIES OF NOMINALLY ANHYDROUS MINERALS	
IN THE TRANSITION ZONE	.328
Wadsleyite	328
Wadsleyite-II	330
Ringwoodite	330
DENSE HYDROUS MAGNESIUM SILICATES	332

Phase A	
Phase-B group minerals	
Phase D	
Phase E	
WATER-ELASTICITY SYSTEMATICS	
CALCULATED HYDROUS VELOCITIES IN THE UPPER MANTLE AND	
TRANSITION ZONE	
CONCLUSIONS AND FUTURE RESEARCH OPPORTUNITIES	
ACKNOWLEDGMENTS	
REFERENCES	

Remote Sensing of Hydrogen in Earth's Mantle

Shun-ichiro Karato

INTRODUCTION	
GEOPHYSICAL OBSERVATIONS	
Electrical conductivity	
Seismic wave velocities	
Seismic wave attenuation	
Seismic anisotropy	
Topography of discontinuity	
Sharpness of discontinuities	
PHYSICAL BASIS FOR INFERRING HYDROGEN CONTENT	
FROM GEOPHYSICAL OBSERVATIONS	
Electrical conductivity	
Seismic properties	
Partial melting?	
SOME EXAMPLES	
Water content in the transition zone	
Distribution of hydrogen in the upper mantle	
Hydrogen in the lower mantle	
SUMMARY AND OUTLOOK	
ACKNOWLEDGMENTS	
REFERENCES	

16 The Role of Water in High-Temperature Rock Deformation

David L. Kohlstedt

INTRODUCTION	
BACKGROUND	
MODELS OF CLIMB-CONTROLLED CREEP	
THE CASE FOR OLIVINE	
DISLOCATION CLIMB	
DIFFUSION	
DEPENDENCE OF CREEP RATE ON WATER FUGACITY	

CONCLUDING REMARKS	
ACKNOWLEDGMENTS	
REFERENCES	
APPENDIX	
Charge neutrality	
Flux equations for a semi-conducting silicate	

17 The Effect of Water on Mantle Phase Transitions

Eiji Ohtani and K. D. Litasov

INTRODUCTION	397
RECENT PROGRESS ON PRESSURE SCALES FOR THE	
DETERMINATION OF PHASE BOUNDARIES IN MANTLE MINERALS	398
EFFECT OF WATER ON PHASE TRANSFORMATION	400
Dry and wet phase boundaries in the olivine-wadsleyite transformation	400
Wadsleyite-ringwoodite transformation	401
Post-spinel transformation	401
Post-garnet transformation in basalt (MORB)	404
EFFECT OF WATER ON PHASE TRANSFORMATION KINETICS	406
Olivine-wadsleyite phase transformation kinetics	406
Post-spinel and post garnet phase transformation kinetics	408
IMPLICATION FOR SEISMIC DISCONTINUITIES AND PHASE	
TRANSFORMATION BOUNDARIES UNDER DRY AND WET CONDITIONS	409
410 km seismic discontinuity and olivine-wadsleyite phase boundary	409
The 660 km seismic discontinuity and the post-spinel transformation:	
average depth and topography of the 660 km seismic discontinuity	410
The density relation of basalt and peridotite near the 660 km discontinuity	412
Seismic reflectors: the possible existence of fluid in the lower mantle	413
CONCLUDING REMARKS	415
ACKNOWLEDGMENTS	415
REFERENCES	

18

Water in the Early Earth

Bernard Marty and Reika Yokochi

INTRODUCTION	
ISOTOPIC CONSTRAINTS ON THE ORIGIN OF TERRESTRIAL WATER	
Hydrogen isotopic ratios	
Nitrogen and carbon isotopic ratios	
Noble gas isotopic ratios	
Other isotopic constraints	
POTENTIAL WATER CONTRIBUTORS	
Contribution of water-rich planetary embryos	
Asteroid contribution	
Constraints on water delivery by asteroidal material from the terrestrial highly	y

siderophile element budget	430
The case of interplanetary dust as a source of terrestrial water	432
PROCESSES OF WATER INCORPORATION IN EARTH	
Solar nebula	435
Impact degassing	437
Impact erosion	
Post-accretional role of a proto-atmosphere in the Early Earth's evolution	
A summary of volatile delivery processes and of their inherent uncertainties	
Cooling of the primordial Earth	
THE WATER CYCLE IN THE HADEAN	440
WATER CONTENT OF THE ARCHEAN MANTLE FROM THE	
COMPOSITION OF KOMATIITES	443
CONCLUSIONS	444
ACKNOWLEDGMENTS	444
REFERENCES	

Water and Geodynamics

Klaus Regenauer-Lieb

INTRODUCTION	
WATER IN THE LITHOSPHERE	
Water and the rigidity of (oceanic) plates	
Water and the nucleation of (new) plate boundaries	
Water and the evolution of plate boundaries	
Water and the stored energy potential Ψ	
Water and the dissipated energy potential Φ	457
Solid versus fluid dynamic modeling setups	
Application to subduction initiation	
WATER IN THE CONVECTING MANTLE	
DISCUSSION AND CONCLUSIONS	
REFERENCES	
APPENDIX: THERMOMECHANICAL APPROACH	

Additional Volume Content:

COLOR PLATE 1	
COLOR PLATE 2	
COLOR PLATE 3	
COLOR PLATE 4	478