Contents

	List of Figures, Tables, and Boxes	ix
	Preface	xvii
	About the Third Edition	xxi
	Acknowledgments	xxv
Part i	Concepts of Wildlife-Habitat Relationships	1
1	The Study of Habitat: A Historical and Philosophical Perspective	3
2	The Evolutionary Perspective	15
3	The Habitat, Niche, and Population Perspectives	43
Part II	The Measurement of Wildlife-Habitat Relationships	129
4	The Experimental Approach in Wildlife Science	131
5	Measuring Wildlife Habitat: What to Measure and How to Measure It	151
6	Measuring Wildlife Habitat: When to Measure and How to Analyze	182
7	Measuring Behavior	220
8	Habitats through Space and Time: Heterogeneity and Disturbance	254
9	Wildlife in Landscapes: Populations and Patches	282
10	Modeling Wildlife-Habitat Relationships	320
Part III	The Management of Wildlife Habitat	377
11	Managing Habitat for Animals in an Evolutionary and Ecosystem Context	379

Contents

12	The Future: New Initiatives and Advancing Education	417
	Afterword	443
	Glossary	447
	About the Authors	451
	Author Index	453
	Subject Index	473

viii

Figures		
Figure 2.1	Possible maximum extent of Pleistocene glaciation in the	
	Northern Hemisphere	17
Figure 2.2	Hemlock pollen abundance in Wisconsin and Michigan lake sediments	
	showing westward movement of hemlock range limit over past 6000 years	18
Figure 2.3	Correlation between archaeological episodes and generalized climatic and	
	vegetational changes, 12,000 BC-AD 250	20
Box Figure 2.1	Model sequence showing effects of glacial flow and ebb on adaptation and	
	evolution of hypothetical ancestral wood warbler and its descendents	23
Box Figure 2.2	Breeding and wintering ground distribution of members of black-throated	
•	green warbler (Dendroica virens) superspecies complex	24
Box Figure 2.3	Abundances (percentages) of four species of microtine rodents and of total	
	microtines (including those unidentifiable to species) recovered from 15	
	fossil excavation levels, New Mexico	25
Figure 2.4	Distribution of extant pikas (Ochotona princeps) and late	
	Pleistocene-Holocene fossil records in western North America	27
Figure 2.5	Temporal changes in relative abundance of ungulate, carnivore, and	
	small-mammal remains in archaeological collections from the lower Snake	
	River, southeastern Washington	28
Figure 2.6	Causal relationships between food web structures, successional state, and	
	ecosystem functions	33
Figure 2.7	Factors influencing population dynamics and community structure in	
	natural systems	35

Figure 2.8	Partial food web depicting relationships between lizards (Leiocephalus and	
	Anolis) and various web components	36
Figure 2.9	Patterns of colonization and general population trends for moose in relation	
	to loss of grizzly bears and wolves, Jackson Hole region, Greater Yellowstone	
	Ecosystem, 1840s–1990s	37
Box Figure 3.1A	Four hypotheses on plant species distributions along environmental	
	gradients	47
Box Figure 3.1B	Actual distributions of plant species populations along environmental	
	gradients	47
Figure 3.1	The amount of edge proliferates with increasing fragmentation, due to the	
_	increased edge per unit area as the number of patches increases, and as	
	individual patches become, on average, more linear or more irregular	
	in shape	49
Figure 3.2	Foliage height diversity (FHD) versus bird species diversity (BSD)	50
Figure 3.3	Number of wildlife species associated with successional stages in a	
· ·	mixed-conifer community	51
Figure 3.4	Model of interactions between mammalian herbivores and plants	52
Figure 3.5	Various activities associated with grazing or browsing animals and their	
Ü	possible effects on plants	53
Figure 3.6	Stand measure of percentage of coarse woody debris cover calculated	
C	separately for capture plots (trap locations where voles were captured);	
	noncapture plots (trap locations chosen randomly out of all locations	
	where voles were not captured); and movement plots (minimum bounding	
	triangle around a vole trail), Montana	56
Figure 3.7	Limited sampling along a gradient in a habitat variable may produce a	
C	positive (a) , nonexistent (b) , or negative (c) correlation with a species	
	response variable such as density	60
Figure 3.8	Generalized depiction of a species' biological response to an environmental	
U	gradient	62
Figure 3.9	Generalized depiction of two species' biological responses to successional	
U	forest stages	63
Figure 3.10	Mean density (n/40.5 – ha index), coefficient of variation (CV) of density	
· ·	among replicate study plots, and percentage of occurrence (PO, percentage	
	of replicate study plots occupied) of (A) brown creepers (Certhia americana)	
	and (B) hermit warblers (Dendroica occidentalis) among five successional	
	stages of Douglas-fir (Pseudotsuga menziesii) forest in northwestern California	64
Figure 3.11	Cumulative number of terrestrial vertebrate species (amphibians, reptiles,	
Ü	birds, and mammals) that use old-forest structural stages as a function of the	
	percentage of all other vegetation structural stages used, in the interior	
	Columbia River basin	66
Box Figure 3.2	Some patterns of spatial distribution of organisms	68
Figure 3.12	Three patterns of relations between annual exponential rate of change in	
-	population and initial size of the population	80
	A A TOTAL TOTAL	

Figure 3.13	Examples of empirical evidence supporting the inverse exponential pattern of relations between changes in population size and initial population size,	
	expressed in two ways	82
Figure 3.14	An example of how inbreeding depression influences effective population size, using the model for intergenic genetic drift presented in box 3.4	83
Figure 3.15	An example of an analysis of the effects of inbreeding depression and population size on the viability of a hypothetical population with an increasing trend ($\lambda = 1.24$), an equal sex ratio, and an initial population set	
	(A) $N_{(\sigma)} = 5$ and (B) $N_{(\sigma)} = 80$	84
Figure 3.16	Classification of genetically determined variation for use in conservation planning	85
Figure 3.17	Equilibrium population size and the distribution of individuals in	
	landscapes containing 0–100% low-quality habitat, where ≤30% of the	
	population selected low-quality habitat over high-quality habitat for	
	breeding	93
Figure 3.18	Current summer distribution of wrentits (<i>Chamaea fasciata</i>) in North America based on mean bird counts per Breeding Bird Survey route,	
	1982–1996	94
Figure 3.19	Different dispersal distances needed to reduce negative characteristics of	
	natal habitat	95
Figure 3.20	The major threatening processes affecting birds, mammals, and plants	104
Figure 3.21	Land ownership and generalized elk movements from high-elevation public	
	land to lower-elevation private land, White River area, Colorado	107
Figure 3.22	Biological information and management objectives are often influenced by	
	political decisions in setting harvest levels	107
Figure 3.23	Probability of wildlife flushing with increasing perpendicular distance	111
Figure 4.1	Activities in the scientific method and common places where statistical tests	
	are employed	132
Figure 5.1	The hierarchical nature of habitat selection	156
Figure 5.2	Hierarchical description of habitat quality assessments.	157
Figure 5.3	An outline of the spatial scales at which ecological field studies are conducted	157
Figure 5.4	Effects of scale on study of patterns of habitat association	158
Figure 5.5	Coefficients of determination (r2 ´ 100) between similarity and distance	
	matrices based on avian, floristic, and physiognomic composition of eight	
	grassland study sites	161
Figure 5.6	Habitat variable sampling configuration used by Dueser and Shugart in their	
	study of small-mammal habitat use	175
Figure 5.7	Sampling scheme used by Reinert for snake locations	177
Figure 6.1	Use of a species of tree by two hypothetical animal species during "summer."	183
Figure 6.2	Habitat selection by female black bears at two study areas in northern Maine	
	during fall (den entry on September 1), 1986–1988	184
Figure 6.3	The necessary sample size, n , as a function of mean density, m , for various	
	degrees of power, $1 - \beta$, when sampling the Poisson distribution	190

Figure 6.4	Influence of sample size on the stability of estimates and measurements of bird-habitat characteristics	191
Figure 6.5	Schematic diagram of the scientific research elements that combined in a synthesis to produce multivariate habitat analysis	195
Figure 6.6	Arcsine-transformed predation on artificial nests ($n = 540$) in 15 prairie fragments regressed onto a natural log-transformed tract area (ln [size] and	
	$ln[size]^2)$	197
Figure 6.7	Results of a principal components analysis of habitat variables associated with capture sites of small mammals at La Picada, Chile	202
Figure 6.8	Principal component (PC) analysis of vegetation cover and snow conditions on muskoxen and reindeer habitats, feeding sites, and craters on the northern Seward Peninsula, Alaska, during late winter	202
Figure 6.9	Summary of the model-building procedure	206
Figure 6.10	Examples of how the extent, or range, of an environmental gradient from	
118414 0110	which samples are taken can influence conclusions	207
Figure 6.11	Tentative model of a community in attribute space	211
Figure 6.12	Distribution of form scores showing separation of three leporid species,	
2.8	southeastern Arizona, along two discriminant axes (DF 1 and DF 2) based	
	on 22 continuous habitat characteristics used in discriminant analysis	212
Figure 7.1	The hierarchy of sampling rules (determining who is watched and when) and	
118410,11	recording rules (determining how their behavior is recorded)	225
Figure 7.2	An example of scan sampling as used to study the foraging strategies of common murres (<i>Uria aalge</i>)	228
Figure 7.3	Seasonal variation in the use of tree species, substrates, and foraging modes	220
	by chestnut-backed chickadees (<i>Parus rufescens</i>)	234
Figure 7.4	A highly simplified transition matrix, analyzing the sequence shown above it,	
Č	which comprises only two different behavior patterns	245
Figure 8.1	A "zoning map" of ecological scale and species assessment, plotting spatial	
	area against time (note log axes)	260
Figure 8.2	A "zoning map" of ecological scale and ecosystem management issues,	
	plotting spatial area against time (note log axes)	261
Figure 8.3	Effects of species mobility, physical heterogeneity of the environment, and	
	competition on species diversity	266
Figure 8.4	An example of how two indices of habitat patch pattern can be highly	2.00
Ti 0 =	correlated	269
Figure 8.5	Four types of disturbance shown by degree, or intensity, and geographic area affected	277
Figure 9.1	Species-area relations of isolated and nonisolated areas	298
Figure 9.2	Faunal collapse of Nairobi National Park as predicted by five faunal collapse	
	species models	299
Figure 9.3	Basic elements of the consequences of habitat isolation and subsequent	
	faunal relaxation (species loss) to new equilibrium levels of diversity	300

Figure 10.1	Causes and correlates: four increasingly complex and realistic scenarios of wildlife-habitat relationships	323
Figure 10.2	Example of a path analysis that partitions the various factors accounting for	
8	variation in public satisfaction with quality deer management (QDM)	325
Figure 10.3	Number of articles on models or modeling published in all journals by the	
O	Wildlife Society (TWS) and the Ecological Society of America (ESA), by	
	decade, 1954–2003	331
Figure 10.4	Example of a STELLA model	341
Figure 10.5	Hypothetical example of a Bayesian belief network model	345
Figure 10.6	Hypothetical example of a decision tree designed to evaluate whether to	
Č	translocate a threatened wildlife population or acquire land for a reserve	346
Figure 10.7	Example of regression tree modeling of three categories of species viability	
Č	risk levels predicted from life history and habitat use attributes, based a	
	sample set of 60 wildlife species in the Pacific Northwest of the United States	348
Figure 10.8	Example of the structure of a fuzzy logic model predicting density of	
•	white-headed woodpecker (WHW; Picoides albolarvatus) territories, using	
	the NetWeaver fuzzy logic modeling shell	350
Figure 10.9	Example of a rule induction model called SARA (Species at Risk Advisor),	
-	using the ID3 rule induction algorithm, of species viability risk levels	
	predicted from life history and habitat use attributes	352
Figure 10.10	Example of a neural network model of the presence and absence of 27 fish	
	species as a function of nine lake habitat variables	354
Figure 10.11	Example of a habitat map and its graph theory analog	356
Figure 11.1	Functional redundancy (number of species) of forest mammals in	
	Washington and Oregon, by selected category of key ecological function	393
Figure 11.2	An example of how patterns of the functional aspects of wildlife do not	
	necessarily correlate with patterns of habitat use	399
Figure 11.3	Changes in functional redundancy (number of all terrestrial vertebrate	
	wildlife species) from historic (early 1800s) to current (ca. 2000) time	
	periods, for the key ecological function (KEF) of soil digging	400
Box Figure 12.1	An envirogram depicting factors hypothesized to influence summer	
	abundance of brush mice (Peromyscus boylii) in the Sacramento Mountains	
	of southern New Mexico	427
Tables		
Table 1.1	Important U.S. legislation stimulating the study, preservation, or	
	management of animal habitat	8
Table 2.1	Studies examining the potential influence of temperature change on the life	
	history of North American animals and plants	31
Table 2.2	Dates of major Pleistocene and Holocene mammalian extinctions	37
Table 3.1	Ecotone hierarchy for a biome transition area	48
	•	

Table 3.2	Anticipated changes of management activities on successional state or condition	54
Table 3.3	Definitions and examples of key terms related to populations, species, and systems and their importance for conservation	70
Table 3.4	Some of the main ecological factors that affect the long-term viability of populations	72
Table 3.5	Types of extinction and their implications for conservation	73
Table 3.6	A classification of the migration status of wildlife species	97
Table 3.7	Mappable elements of habitat distribution and pattern important to maintaining metapopulations	114
Table 3.8	Conditions of organisms, populations, and species warranting particular management attention for conservation of biodiversity	116
Table 5.1	Variables and sampling methods used by Dueser and Shugart in measuring forest habitat structure	169
Table 5.2	Structural and climatic variables used by Reinert in differentiating microhabitats of timber rattlesnakes (<i>Crotalus horridus</i>) and northern	
	copperheads (Agkistrodon contortrix)	170
Table 5.3	Hierarchic arrangement of ecological components represented by 43 measurements of the forest environment taken in conjunction with sampling	
	for the Del Norte salamander (Plethodon elongatus)	171
Table 5.4	Average work accomplished in 30 minutes of field effort recording the	
	species and diameters of trees in an upland Ozark forest in Arkansas	174
Table 6.1	Vegetational habitat variables and their mnemonics, used by Gotfryd and Hansell	192
Table 6.2	Classification of common statistical techniques	199
Table 6.3	Eigenvectors for the significant components resulting from a principal components analysis conducted on summer and winter vegetative	
	parameters	201
Table 6.4	Summary of the first four principal components	203
Table 6.5	Results of principal components analysis using weighted averages of eight	
	habitat variables for thirty-four bird species	203
Table 6.6	Classification matrix derived from a discriminant function program showing actual and predicted species (group) membership for singing male warblers	
	based on habitat use on the deciduous and nondeciduous tree sites.	209
Table 6.7	Discriminant analysis of small mammal habitat use, western Oregon	210
Table 7.1	Time budgets of loggerhead shrikes, in hours spent per activity	235
Table 7.2	Cost of activity in loggerhead shrikes	237
Table 7.3	Results of comparing usage and availability data when a commonly available	
	but seldom-used item (A) is included and excluded from consideration	247
Table 8.1	Aspects and examples of scale at three levels of magnitude	258
Table 8.2	Components of habitat heterogeneity in landscapes	263
Table 8.3	Some indices of habitat heterogeneity	268
Table 8.4	Effects of three types of disturbance on forest components	276

Table 10.1 Table 11.1	Criteria useful for validating wildlife–habitat relationship models A hierarchic classification of key ecological functions of wildlife species	328 390
Table 11.2	A taxonomy of patterns of key ecological functions (KEFs) of wildlife species	
	and communities, and how to evaluate them using a wildlife-habitat	205
T-1.1. 11 2	relationships database	395
Table 11.3 Box Table 12.12	Classification of ecosystem services	403
box rable 12.12	Precision and relative importance of ecological factors associated with	
	summer abundance (g/ha) of brush mice in the Sacramento Mountains,	420
Table 12.1	New Mexico (1992–1994)	429
Table 12.1	Desiderata for a more rigorous community ecology	432
Boxes		
Box 2.1	Wood warbler occupation of North America as related to Pleistocene	
	geologic events	22
Box 2.2	Progression of four species of microtine rodents	25
Box 3.1	Whittaker's four hypotheses on the distribution of plant species populations	46
Box 3.2	How distance can act to genetically isolate organisms and populations	67
Box 3.3	Population viability modeling and analysis	75
Box 3.4	Alternative ways of calculating effective population size, N_e	77
Box 4.1	What is a statistical interval and how should it be used in wildlife studies?	136
Box 6.1	How many samples are needed?	188
Box 9.1	Edge effects and changing perspectives	283
Box 9.2	Adaptive radiation of species complexes in island and continental settings	292
Box 9.3	Adaptive radiation of New Zealand lizards	294
Box 9.4	Some interesting kinds of habitat isolates	304
Box 10.1	Propagation of error in modeling wildlife-habitat relationships	329
Box 10.2	Bayesian modeling and wildlife habitat	343
Box 10.3	Using decision trees for conservation planning	347
Box 11.1	What is wildlife?	381
Box 11.2	Thinking green in an urban environment: City greenbelts as natural	
	environments in urban landscapes	386
Box 12.1	Envirograms: Templates for modeling wildlife-habitat relationships	427
Afterword box		
	Primary elements and assumptions of a resource planning scenario designed	
	for long-term sustainability of habitats for wildlife and humans.	445