CONTENTS

1. NUCLEAR TRANSFORMATION OF EUKARYOTIC MICROAI HISTORICAL OVERVIEW, ACHIEVEMENTS	
AND PROBLEMS	1
Rosa León and Emilio Fernández	
Abstract	1
Introduction	
Microalgae Groups Transformed	
Methods for Microalgae Transformation	
Characteristics of the Transformation Process	
DNA Constructions Used in Transformation	
Difficulties for Stable Expression of the Transgenes	
Concluding Remarks	8
2. TRANSFORMATION OF CYANOBACTERIA	12
Agustín Vioque	
Abstract	12
Introduction	12
Transformation of Cyanobacteria	13
Applications	14
3. MOLECULAR BIOLOGY AND THE BIOTECHNOLOGICAL	
POTENTIAL OF DIATOMS	23
Peter Kroth	
Abstract	23
Diatom Biology	23
Genetic Manipulation of Diatoms	25
Biochemistry of Diatoms and Technological Applications	29
Synthesis of Fatty Acids	29
Biomineralization	
Concluding Remarks	

x C	ontents
4. TOOLS AND TECHNIQUES FOR CHLOROPLAST	
TRANSFORMATION OF CHLAMYDOMONAS	34
Saul Purton	
Abstract	
Introduction	
Delivery of DNA into the Chloroplast Compartment	36
Integration of Transforming DNA	37
Polyploidy and the Problems of Heteroplasmy	39 A1
Reverse-Genetic Studies of the Chlamydomonas Plastome	42
Expression of Foreign Genes in the <i>Chlamydomonas</i> Chloroplast	
Future Prospects	
5. INFLUENCE OF CODON BIAS ON THE EXPRESSION	
OF FOREIGN GENES IN MICROALGAE	46
Markus Heitzer, Almut Eckert, Markus Fuhrmann and Christoph Griesbeck	
Abstract	46
General Aspects of Codon Bias in Pro- and Eukaryotic Expression Hosts	
Phaeodactylum tricornutum	47
Chlamydomonas reinhardtii—Expression from Chloroplast and Nucleus	48
Concluding Remarks	54
6. IN THE GRIP OF ALGAL GENOMICS	54
Arthur R. Grossman	
Abstract	54
Introduction	
Which Organisms Should Have Their Genomes Sequenced?	56
Full Genome Sequences	
cDNA and Partial Genome Sequences	
Viral Genomes	
Concluding Remarks	67
7. INSERTIONAL MUTAGENESIS AS A TOOL TO STUDY	
GENES/FUNCTIONS IN CHLAMYDOMONAS	77
Aurora Galván, David González-Ballester and Emilio Fernández	
Abstract	77
Chlamydomonas as a Model for Translational Biology	
Mutants as a Tool for Functional Genomics	
Future Perspectives	

Contents	xi
----------	----

8. OPTIMIZATION OF RECOMBINANT PROTEIN EXPRESSION IN THE CHLOROPLASTS OF GREEN ALGAE9	0
Samuel P. Fletcher, Machiko Muto and Stephen P. Mayfield	•
·	
Abstract9	
Introduction9	
Expression of Recombinant Proteins in the Chlamydomonas Chloroplast9	
Strategies for Increasing Recombinant Protein Expression in Algal Chloroplast 9	4
Conclusion and Prospectus9	6
A DIVISOR DIVISION OF AN ANALYSIS OF AN ANALYSIS	
9. PHYCOREMEDIATION OF HEAVY METALS USING	
TRANSGENIC MICROALGAE99	9
Sathish Rajamani, Surasak Siripornadulsil, Vanessa Falcao, Moacir Torres, Pio Colepicolo and Richard Sayre	
Abstract9	9
Metals in the Environment	
The Role of the Algal Cell Wall in Heavy Metal Binding and Tolerance	
The Plasma Membrane and Heavy Metal Flux	
Heavy Metal Metabolism in the Cytoplasm of Algae	T
Algal Heavy Metal Biosensors	
Application of Engineered Algae for Bioremediation: The Risks and Benefits 100	5
10. HYDROGEN FUEL PRODUCTION	
BY TRANSGENIC MICROALGAE 110	,
Anastasios Melis, Michael Seibert and Maria L. Ghirardi	
Abstract)
Overview	
Sulfur-Nutrient Deprivation Attenuates Photosystem-II Repair and Promotes	•
H ₂ -Production in Unicellular Green Algae11	1
Grand's Device of Sulface Market State in Misses In Development In 112	1
Genetic Engineering of Sulfate Uptake in Microalgae for HProduction	,
Application of the Hydrogenase Assembly Genes in Conferring H ₂ -Production	
Capacity in a Variety of Organisms	•
Engineering O ₂ Tolerance to the Green Algal Hydrogenase	•
Engineering Starch Accumulation in Microalgae for H ₂ -Production	•
Engineering Optimal Light Utilization in Microalgae for H ₂ -Production	1
Future Directions	ţ
11. MICROALGAL VACCINES 122	<u>:</u>
Surasak Siripornadulsil, Konrad Dabrowski and Richard Sayre	
Abstract	!
Introduction	
Oral Vaccines	
Microalgal Vaccines	
Recent Progress	
Neverte 1 10g1c55124	,
INDEX 129	
LIVEA	,