CONTENTS

Preface		•	•	•		•			•	•	•	v
Chapter	1. Nature of soils				•							1
1.1	Introduction											1
	Soil from a physical viewpoint											1
	Importance of physical properties .				•							2
1.2	Origin of soil											2
1.3	Soil classification				•							4
1.4	Procedure for the mineralogical analysis of	f so	oils									5
1.5	Particle-size composition of soils											8
	Measurement of particle-size distributi	on										10
	Principles of sedimentation analysis											11
	Interpretation of accumulation curves				•							13
1.6	Basic soil properties											16
	Weight and volume											16
	Consistency limits											17
1.7	Summary	•	•	•	•	•	•	•			•	19
Chapter	2. Clay minerals in soils											21
2.1	Introduction											21
2.2	Nature of clay minerals											21
	Definition											21
	Structure											22
2.3	Clay minerals common in soils											26
	Kaolinite		•									26
	Chlorite											27
	Clay mica (illite)											28
	Montmorillonite											30
	Vermiculite									•		31
	Interstratified minerals											32
	Allophane											33
	Attapulgite											34
	Clay-mineral mixtures											34
	Weathering of clay minerals	•										34
	Occurrence of clay minerals in soils.					•						35
2.4	Identification of clay minerals		•									36

	37 ··· · · · · · · · · · · · · · · · · ·
	X-ray diffraction 42 Differential thermal analysis
	Infrared spectroscopy
	Flectron microscopy
15	Surface area of clavs
2.5	Water and ion adsorption at clay surfaces
2.0	Hydration of clays
	Flectric charge
	Exchangeable cations
	Diffuse ion-lavers
27	Interaction of clay particles
2.7	Repulsion
	Attraction
	Particle arrangement
	Flocculation and dispersion
2.8	Plasticity
2.0	Liquid and plastic limits
	Interpretation of plastic limit and liquid limit
2.9	Rheotropy
	Rest-hardening and structure
2.10	Summary
Chapte	r 3. Soil fabric and structure
3.1	Introduction
3.2	Structure and fabric
3.3	Granular soil packing
3.4	Clay soil fabric
	Fabric classification
	Particle arrangement in fabric units
	First- and second-order fabric characterization
3.5	Pore spaces and fabric
3.6	Techniques for direct fabric viewing
3.7	Quantification of fabric
3.8	Fabric characteristics from sedimentation
	Fresh-water deposition
	Deposition in salt water
3.9	Fabric alteration by compaction and compression
3.10	Summary
Char	ter 4 Soil water
41	Introduction
4 2	Water content and its management
	Definitione Definitione

	Indirect measurement of water content					. 104
4.3	The concept of soil-water potential					. 106
	Buckingham's capillary potential					. 106
	Component potentials					. 108
	Formulation from reversible thermodynamics					. 110
	Formulation from irreversible thermodynamics				•	. 111
	Geometric concepts and soil-water potential	•	•			. 112
	Terminology and units					. 115
4.4	Water retention in soils					. 116
	Retention curves for different soils					. 116
	Forces of water retention in soils					. 119
	Hysteresis					. 122
4.5	Measurement of soil-water potential					. 124
	Measurement of water content at applied potentials	•				. 124
	Measurement of potential in situ					. 127
	Indirect measurements of potential					. 130
4.6	Secondary effects on water retention					. 132
	Entrapped air					. 132
	Temperature					. 132
	Effect of drving					. 133
	Rate of potential change					. 134
	Overburden load effects					. 134
	Fabric effects					. 135
4.7	Use of the potential concept					. 135
	General					. 135
	Predicting water under covered areas or in swelling so	oils	•	•		. 137
	Use of soil-water potential for clay soils					. 138
4.8	Summary					. 139
Chapter	5. Water movement in soils			•	•	. 141
5.1	Introduction			•	•	. 141
5.2	Saturated flow			•		. 143
	Darcy's equation	•	•	•	•	. 143
	Kozeny-Carmen relationship	•	•	•	•	. 144
	Layered soils	•	•	•	•	. 147
	Factors affecting saturated flow	•	•	•		. 149
	Saturated flow in clays	•	•	•	•	. 150
	Steady-state flow	•		•	•	. 154
5.3	Unsaturated flow	•	•	•	•	. 157
	General considerations	•	•	•	·	. 157
	Unsaturated flow equations for no volume change.	•	•	•		. 159
	Unsaturated flow equations for volume-change cases			•	•	. 163
	A generalized unsaturated flow equation	•	•	·	•	. 166

5 A	Mainture profiles and wetting front advance	168
5.4	Diffusivity functions	170
<i>c c</i>	Measurement of unsaturated hydraulic conductivity, k or D	173
5.5	Stondy state k	174
	Steady state D	174
	Site y state, D	175
	Infiltration method for D	176
	Field measurement of k	176
	Colculation of k from void-size distribution	178
56	Unsaturated flow mechanisms and behaviour	178
5.0	Interaction of salt and clay	178
	Smalling in unceturated flow	180
	Flow is allowhere glave	184
	Flow in anophane clays	184
	Flow due to infimili gradients	189
e 71	Effect of solute gradients	190
5.7	Distribution of mater during infiltration	190
		102
		102
	Factors affecting influtration into soils	193
		194
3.8	Summary	195
Chapte	er 6. Volume changes in clav soils	197
6.1	Introduction	. 197
6.2	Shrinking	. 199
	Soil characteristics affecting shrinkage	. 199
	Crack formation during shrinking	. 205
	Measurement of shrinkage for samples	. 206
6.3	Swelling	. 207
	Soil characteristics affecting swelling	. 207
	Swelling pressure of soils	. 210
	Mechanism of swelling	. 212
	Summary of swelling	. 216
6.4	Volume changes in the field	. 217
	Prediction of heave from soil properties	220
6.5	Summary	. 220
~		
Chap	ter /. Consolidation and compression	. 223
/.1	Introduction	. 223
	Compressibility, consolidation and creep	. 224
7 0	Effective stresses	. 226
1.2	Consolidation of clay	. 228
	Review of the theory for one-dimensional consolidation	. 229

٠

CONTENTS

7.3	Laboratory consolidation test
	Estimation of total compression
7.4	Time and load-deformation curves
	Load-increment ratio
7.5	Soil structure in consolidation and compression
	Fabric changes in compression
	Temperature effect
	Structure and creep
7.6	Summary
Chapter	8. Yield and failure
8.1	Introduction
	The concepts of vield and failure in soils
	Principal stress space
8.2	Yield criteria
	The maximum-stress theory
	The maximum elastic-strain theory 267
	The constant elastic-strain energy theory 267
	The maximum shear-stress theory 267
	The constant elastic strain-energy-of-distortion theory 269
83	Failure theories
84	Laboratory triaxial test techniques for strength measurement 276
0.4	Avisymmetric triavial test 278
85	Principal stress space and admissible yield or failure criteria
0.5	The plastic notential 286
86	Summary 280
0.0	
Chapter	9. Granular soil strength
9.1	Introduction
9.2	Friction properties
	Apparent friction parameter, ϕ
	Sliding and interlocking friction
9.3	Laboratory measurement of granular soil strength
	Measurement of friction angle, ϕ
	Stress and strain
9.4	The intrinsic friction angle
9.5	Volumetric strain
9.6	Summary
Chanter	10 Cohesive soil strength 317
10 1	Introduction 317
	Analytical and physical strength parameters 317
10.2	Pore-mater pressure 318
10.2	

	Components of pore-water pressure – fully saturated soil 310
	Pore pressures in a partly saturated clay
	Practical considerations in pore-water measurements
	Pore-pressure coefficients
	Laboratory determination of pore-pressure coefficients
10.3	Analytical shear strength parameters (from Mohr-Coulomb failure
	theory)
10.4	Mechanisms for development of shear strength
	Physical and physico-chemical components of friction and
	cohesion
	Fabric units and bonding in shear strength
	Shear strength interpreted from interparticle forces
10.5	Strength and soil structure
	Fabric and soil-water potential
	Interpretation of fabric change from Mohr-Coulomb diagram 352
	Anisotropic effects
10.6	Some methods and mechanisms for laboratory evaluation of strength
	parameters
	Separation of shear strength into cohesion and friction
	parameters
	Reaction rates and rate process
10.7	Yield and failure
	Plasticity analysis
	Yielding of bonded and unbonded clays
	Failure
10.8	Summary
Chapte	r 11. Soil freezing and permafrost
11.1	Introduction
11.2	Geothermal profile
11.3	Freezing index
11.4	Frost penetration
	Diffusion
	Estimation of depth of frost penetration
11.5	Freezing in coarse-grained soils
11.6	Freezing in fine-grained soils
11.7	Heave and frost heaving pressures
	Calculation of frost heaving pressures
	Constraints and heaving pressures
11.8	Untrozen water in frozen soils
	Soil-water potential and unfrozen water
11.0	Water movement in frozen soils
11.9	rield trost heaving

XII

CONTENTS

11.10	Therma	al er	osic	n								•					•	•	•				417
11.11	Summa	ary	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	·	•	419
Append	ix 1. Int	erm	oled	cula	ır a	ttr	act	ion	ı, tł	he I	hyd	lrog	zen	bo	nd	an	d th	he s	tru	cti	ıre	of	•
water		٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	421
Append	ix 2A. T	Theo	reti	cal	dis	tri	but	tior	ı of	f ex	cha	ing	eal	ble i	ion	s ai	rou	nd	a si	ing	le		
clay par	ticle	•	•	•		•	•	•	•	•	•	•	•	•	•		•	·	·	•	•	•	423
Append	ix 2B. T	"heo	reti	cal	dis	trii	but	ion	ı of	° ca	tio	ns l	bet	wee	en i	two	ch	arg	ed	pla	tes	•	427
Appena	lix 3. So	oil fli	ux a	ınd	vo	lun	ne	cha	inge	e in	un	isat	ura	itec	l-fl	ow	eq	uat	ion	S			429
Referer	nces.		•	•		•		•		•	•	•	•		•				•		•		.431
Author	Index			•	•		•	•		•	•	•	•		•							•	441
Subject	Index	•••	•	•			•	•		•													445