Inhaltsverzeichnis

Aurziassung	······
Abstract	Il
Inhaltsverzeichnis	II
Abbildungsverzeichnis	VII
Tabellenverzeichnis	X
Verzeichnis der verwendeten Formelzeichen und Abkürzungen	XI
Verzeichnis der verwendeten Formelzeichen und Abkürzungen	XI
1. Einleitung	1
1.1. Motivation	7
1.2. Ziel der Arbeit	
2. Grundlagen und Stand der Technik	
2.1. Kohlenstofffasern	
2.1.1. Herstellung von Kohlenstofffasern	
2.1.1.1. Herstellung aus Naturfasern	
2.1.1.2. Herstellung aus Mesophasenpech	6
2.1.1.3. Herstellung aus polymerem Precursor	
2.1.2. Aufbau von Kohlenstofffasern	
2.1.3. Eigenschaften von Kohlenstofffasern	
2.1.3.1. Mechanische Eigenschaften	
2.1.3.2. Elektrische Eigenschaften	
2.1.3.3. Oberflächeneigenschaften	15
2.1.4. Charakterisierung von Kohlenstofffasern	
2.1.4.1. Mechanische Eigenschaften	17
2.1.4.2. Elektrische Eigenschaften	18
2.1.4.3. Mikrostruktur	
2.1.4.4. Faseroberfläche	
2.2. Kohlenstofffaserverstärkte Kunststoffe	
2.2.1. Eigenschaften und Einsatzgebiete	
2.2.2. Herstellungsverfahren	
2.2.2.1. Formpressverfahren	
2.2.2.2. Spritzgießen	
2.2.2.3. Weitere Verfahren	
2.2.3. Faser-Matrix-Haftung	
2.2.3.1. Verfahren zur Untersuchung der Faser-Matrix-Haf	
2.2.3.2. Der Single-Fibre-Fragmentation Test	28

	2.2.3.	3. Erweiterte Modelle und Methoden	30
	2.2.4.	Eigenschaften diskontinuierlich verstärkter Faserverbundwerkstoffe	32
	2.2.4.	1. Berechnungsmethode von Halpin und Tsai	33
	2.2.4.	2. Berücksichtigung einer Streuung der Faserlänge	34
	2.2.4.		
	Eigen	schaften von Kurzfaserverbunden	38
2		cycling von Verbundwerkstoffen	
	2.3.1.	Entstehung von C-Faserhaltigen Abfällen	
	2.3.2.	Entsorgung von CFK	41
	2.3.3.	Einteilung der Verfahren	
	2.3.3.	Primäres und sekundäres Recycling	44
	2.3.3.2	2. Tertiäres Recycling	45
	2.3.3.	3. Quartäres Recycling	45
	2.3.4.	Einfache stoffliche Recyclingverfahren	46
	2.3.4.	1. Verwendung von Fertigungsabfällen	46
	2.3.4.2	2. Partikelrecycling	48
	2.3.5.	Verfahren zur Trennung von Faser und Matrix	
	2.3.5.	1. Solvolyse	50
	2.3.5.2		
	2.3.5.3	3. Hydrolyse	52
	2.3.5.4		
	2.3.5.	5. Bewertung der Verfahren	56
3.		dete Materialien	
3	.1. CFI	K-Abfälle	
	3.1.1.	Prepreg	
	3.1.2.	HTA-Fasern	
	3.1.3.	Epoxidharz 913C	
3		trixsysteme für Compoundierversuche	61
	3.2.1.	Polyamid 12	
	3.2.2.	Epoxidharz	61
4.	Method	len	63
4	.1. Pvr	olyseversuche	64
	4.1.1.	Pyrolyse im gasbefeuerten Chargenofen	
	4.1.2.	Pyrolyse in einem Pilotofen bei kontrollierter Atmosphäre	
	4.1.3.		
	4.1.4.	Übersicht der hergestellten Probenmaterialien	67
4	.2. Cha	arakterisierung der zurückgewonnenen C-Fasern	
	4.2.1.	Mechanische Eigenschaften	
	4.2.2.	Elektrische Eigenschaften	
	4.2.2.		
	4.2.2.		
	4.2.3.	Oberflächeneigenschaften	
	4.2.3.	1. Rasterelektronenmikroskopie	
	4.2.3.	2. Stickstoffadsorption	
	4.2.3.		

	4.2.4. Untersuchungen zur Zusammensetzung und Mikrostruktur	76
	4.2.4.1. Röntgendiffraktometrie	76
	4.2.4.2. Thermogravimetrische Analysen	
	4.2.4.3. Elementanalyse	78
	4.2.5. Gemahlene C-Fasern	
	4.2.5.1. Der Mahlprozess - Hammermühle	79
	4.2.5.2. Verfahren zur Bestimmung der Faserlängenverteilung	79
4	4.3. Charakterisierung von Verbundwerkstoffproben	81
	4.3.1. Single-Fibre-Fragmentation Test	81
	4.3.1.1. Probenherstellung	81
	4.3.1.2. Prüfung	
	4.3.2. Thermoplastische Matrix - Polyamid 12	84
4	I.4. Optimierung des Pyrolyseprozesses	85
	4.4.1. Pyrolyseversuche an Neufasern	86
	4.4.2. Pyrolyseversuche an Epoxidharz	86
	4.4.3. Pyrolyseversuche an Prepregs	87
_	n 1 1 1 1 1	
5.	Ergebnisse und Diskussion	
5	5.1. Charakterisierung der zurückgewonnenen C-Fasern	
	5.1.1. Mechanische Eigenschaften	
	5.1.2. Elektrische Eigenschaften	
	5.1.2.1. Einzelfaserleitfähigkeit	
	5.1.2.2. Stampfwiderstand	
	5.1.3. Oberflächeneigenschaften	
	5.1.3.1. Elektronenmikroskopie	
	5.1.3.2. Stickstoffadsorption	
	5.1.3.3. Raman-Spektroskopie	
	5.1.4. Zusammensetzung / Mikrostruktur	
	5.1.4.1. Röntgendiffraktometrie	
	5.1.4.2. Thermogravimetrische Analysen	
	5.1.4.3. Elementanalyse	
	5.1.5. Bestimmung der Faserlängen gemahlener C-Fasern	
5	5.2. Charakterisierung von Verbundwerkstoffproben	
	5.2.1. Single-Fibre-Fragmentation Test	
_	5.2.2. Zugversuche	
5	5.3. Optimierung des Pyrolyseprozesses	
	5.3.1. Pyrolyseversuche an Epoxidharz	
	5.3.2. Untersuchung des Pyrolysekoks	
	5.3.3. Pyrolyseversuche an Kohlenstofffasern	
	5.3.4. Pyrolyseversuche an Prepregs	
	5.3.5. Charakterisierung der Recyclate	
	5.3.6. Ableitung eines optimierten Pyrolyseprozesses und Praxisversuch.	139
6.	Abschließende Diskussion	142
7.	Zusammenfassung	144
	Aushlick	
8.	A IINHEK	140

ndex und Verzeichnisse	
i tanatuwi awai ahui a	
Literaturverzeichnis148	