1	Intro	oduction .		1		
	1.1	Example: Treatment of Back Pain				
	1.2	The Fa	mily of Multipredictor Regression Methods	2		
	1.3		tion for Multipredictor Regression	3		
		1.3.1	Prediction	3		
		1.3.2	Isolating the Effect of a Single Predictor	3		
		1.3.3	Understanding Multiple Predictors	4		
	1.4	Guide	to the Book	4		
2	Expl	oratory a	nd Descriptive Methods	7		
	2.1	Data C	hecking	7		
	2.2	Types	of Data	8		
	2.3	One-Va	ariable Descriptions	9		
		2.3.1	Numerical Variables	9		
		2.3.2	Categorical Variables	16		
	2.4	Two-Va	ariable Descriptions	17		
		2.4.1	Outcome Versus Predictor Variables	17		
		2.4.2	Continuous Outcome Variable	18		
		2.4.3	Categorical Outcome Variable	21		
	2.5	Multivariable Descriptions				
	2.6	Summary 2				
	2.7	Proble	ns	25		
3	Basic	Statistic	al Methods	27		
	3.1	t-Test a	and Analysis of Variance	27		
		3.1.1	<i>t</i> -Test	28		
		3.1.2	One- and Two-Sided Hypothesis Tests	28		
		3.1.3	Paired <i>t</i> -Test	29		
		3.1.4	One-Way Analysis of Variance	30		
		3.1.5	Pairwise Comparisons in ANOVA	30		
		3.1.6	Multi-way ANOVA and ANCOVA	31		
		317	Robustness to Violations of Normality Assumption	31		

xii Contents

		3.1.8	Nonparametric Alternatives	32
		3.1.9	Equal Variance Assumption	32
	3.2	Correlati	ion Coefficient	33
		3.2.1	Spearman Rank Correlation Coefficient	34
		3.2.2	Kendall's τ	34
	3.3	Simple I	Linear Regression Model	35
		3.3.1	Systematic Part of the Model	35
		3.3.2	Random Part of the Model	36
		3.3.3	Assumptions About the Predictor	37
		3.3.4	Ordinary Least Squares Estimation	38
		3.3.5	Fitted Values and Residuals	39
		3.3.6	Sums of Squares	39
		3.3.7	Standard Errors of the Regression Coefficients	40
		3.3.8	Hypothesis Tests and Confidence Intervals	40
		3.3.9	Slope, Correlation Coefficient, and R^2	42
	3.4	Continge	ency Table Methods for Binary Outcomes	42
		3.4.1	Measures of Risk and Association for	
			Binary Outcomes	43
		3.4.2	Tests of Association in Contingency Tables	46
		3.4.3	Predictors with Multiple Categories	48
		3.4.4	Analyses Involving Multiple Categorical	
			Predictors	50
		3.4.5	Collapsibility of Standard Measures of Association	52
	3.5	Basic M	ethods for Survival Analysis	54
		3.5.1	Right Censoring	54
		3.5.2	Kaplan–Meier Estimator of the Survival Function	55
		3.5.3	Interpretation of Kaplan–Meier Curves	57
		3.5.4	Median Survival	58
		3.5.5	Cumulative Event Function	59
		3.5.6	Comparing Groups Using the Logrank Test	60
	3.6	Bootstra	p Confidence Intervals	62
	3.7		tation of Negative Findings	64
	3.8		Notes and References	65
	3.9	Problem	ıs	65
	3.10	Learning	g Objectives	66
4	Linea	r Regress	ion	69
	4.1	-	e: Exercise and Glucose	70
	4.2	_	E Linear Regression Model	72
		4.2.1	Systematic Part of the Model	72
		4.2.2	Random Part of the Model	73
		4.2.3	Generalization of R^2 and r	75
		4.2.4	Standardized Regression Coefficients	75
	4.3	Categori	ical Predictors	76
	-	4.3.1	Binary Predictors	76
			•	

Contents xiii

		4.3.2	Multilevel Categorical Predictors	T_{i}
		4.3.3	The <i>F</i> -Test	81
		4.3.4	Multiple Pairwise Comparisons Between Categories	81
		4.3.5	Testing for Trend Across Categories	84
	4.4	Confou	nding	
		4.4.1	Range of Confounding Patterns	
		4.4.2	Confounding Is Difficult to Rule Out	
		4.4.3	Adjusted Versus Unadjusted $\hat{\beta}$ s	
		4.4.4	Example: BMI and LDL	
	4.5		on	94
	1.5	4.5.1	Indirect Effects via the Mediator	95
		4.5.2	Overall and Direct Effects	95
		4.5.3	Percent Explained	96
		4.5.4	Example: BMI, Exercise, and Glucose	
		4.5.5	Pitfalls in Evaluating Mediation	97
	4.6		ion	99
	4.0	4.6.1	Example: Hormone Therapy and Statin Use	100
		4.6.2	Example: BMI and Statin Use	100
		4.6.3	Interaction and Scale	102
		4.6.3		
			Example: Hormone Therapy and Baseline LDL	106
	4.7	4.6.5	Details	107
	4.7		ng Model Assumptions and Fit	108
		4.7.1	Linearity	109
		4.7.2	Normality	116
		4.7.3	Constant Variance	119
		4.7.4	Outlying, High Leverage, and Influential Points	124
		4.7.5	Interpretation of Results for Log	4.00
			Transformed Variables	128
		4.7.6	When to Use Transformations	129
	4.8	•	Size, Power, and Detectable Effects	130
		4.8.1	Calculations Using Standard Errors Based	
			on Published Data	133
	4.9	Summa	ry	135
	4.10	Further	Notes and References	135
		4.10.1	Generalized Additive Models	136
	4.11	Problem	1S	136
	4.12	Learnin	g Objectives	138
5	Logist	ic Regres	ssion	139
	5.1		Predictor Models	140
		5.1.1	Interpretation of Regression Coefficients	144
		5.1.2	Categorical Predictors	146
	5.2		edictor Models	150
	_	5.2.1	Likelihood Ratio Tests	154
		5.2.2	Confounding	156
				3

xiv Contents

		5.2.3	Mediation	. 158
		5.2.4	Interaction	. 160
		5.2.5	Prediction	. 165
		5.2.6	Prediction Accuracy	. 166
	5.3	Case-Co	ontrol Studies	. 168
		5.3.1	Matched Case-Control Studies	. 171
	5.4	Checkir	ng Model Assumptions and Fit	. 173
		5.4.1	Linearity	. 173
		5.4.2	Outlying and Influential Points	
		5.4.3	Model Adequacy	. 177
		5.4.4	Technical Issues in Logistic Model Fitting	. 179
	5.5	Alterna	tive Strategies for Binary Outcomes	. 180
		5.5.1	Infectious Disease Transmission Models	. 181
		5.5.2	Pooled Logistic Regression	. 183
		5.5.3	Regression Models Based on Risk	
			Differences and Relative Risks	. 186
		5.5.4	Exact Logistic Regression	. 188
		5.5.5	Nonparametric Binary Regression	. 189
		5.5.6	More Than Two Outcome Levels	. 190
	5.6	Likelih	ood	. 192
	5.7	Sample	Size, Power, and Detectable Effects	. 194
	5.8	Summa	ıry	. 199
	5.9	Further	Notes and References	200
	5.10	Problen	ns	200
	5.11	Learnin	ng Objectives	. 202
6	Survix	zal Analy	ysis	203
U	6.1	•	l Data	
	0.1	6.1.1		203
		0.1.1	Why Linear and Logistic Regression Would not Work	203
		6.1.2	Hazard Function	
		6.1.3	Hazard Ratio	
		6.1.4	Proportional Hazards Assumption	
	6.2		oportional Hazards Model	
	0.2	6.2.1	•	
		6.2.2	Proportional Hazards Models Parametric Versus Semi-parametric Models	
		6.2.3	Hazard Ratios, Risk, and Survival Times	
		6.2.4		
		6.2.5	Hypothesis Tests and Confidence Intervals	
		6.2.6	Binary Predictors	
		6.2.7	•	
			Confounding	
		6.2.8	Confounding	
		6.2.9	Mediation	
		6.2.10	Interaction	
		6.2.11	Model Building	. 222

Contents

		6.2.12	Adjusted Survival Curves for Comparing Groups	222
		6.2.13	Predicted Survival for Specific Covariate Patterns	224
	6.3	Extens	ions to the Cox Model	225
		6.3.1	Time-Dependent Covariates	. 225
		6.3.2	Stratified Cox Model	
	6.4	Checki	ng Model Assumptions and Fit	. 231
		6.4.1	Log-Linearity of the Hazard Function	
		6.4.2	Proportional Hazards	
	6.5	Compe	ting Risks Data	. 239
		6.5.1	What Are Competing Risks Data?	
		6.5.2	Notation for Competing Risks Data	
		6.5.3	Summaries for Competing Risk Data	
	6.6	Some I	Details	
		6.6.1	Bootstrap Confidence Intervals	
		6.6.2	Prediction	
		6.6.3	Adjusting for Nonconfounding Covariates	
		6.6.4	Independent Censoring	
		6.6.5	Interval Censoring	
		6.6.6	Left-Truncation	
	6.7		Size, Power, and Detectable Effects	
	6.8	_	ry	
	6.9		Notes and References	
	6.10		ns	
	6.11		g Objectives	
7	Donos			
′	7.1		sures and Longitudinal Data Analysisle Repeated Measures Example: Fecal Fat	
	7.1	7.1.1	Model Equations for the Fecal Fat Example	
			•	
		7.1.2	Correlations Within Subjects	
	7.2	7.1.3	Estimates of the Effects of Pill Type	
	7.2		hical Data	
		7.2.1	Example: Treatment of Back Pain	
		7.2.2	Example: Physician Profiling	
	7.2	7.2.3	Analysis Strategies for Hierarchical Data	
	7.3		dinal Data	
		7.3.1	Analysis Strategies for Longitudinal Data	
		7.3.2	Analyzing Change Scores	
	7.4		ized Estimating Equations	
		7.4.1	Example: Birthweight and Birth Order Revisited	
		7.4.2	Correlation Structures	
		7.4.3	Working Correlation and Robust Standard Errors	
		7.4.4	Tests and Confidence Intervals	
		7.4.5	Use of xtgee for Clustered Logistic Regression	
	7.5		Effects Models	
	7.6	Re-Ana	lysis of the Georgia Babies Data Set	. 286

xvi Contents

	7.7	Analysi	is of the SOF BMD Data	288
		7.7.1	Time Varying Predictors	289
		7.7.2	Separating Between- and Within-Cluster Information.	291
		7.7.3	Prediction	293
		7.7.4	A Logistic Analysis	294
	7.8	Margin	al Versus Conditional Models	295
	7.9	Exampl	le: Cardiac Injury Following Brain Hemorrhage	296
		7.9.1	Bootstrap Analysis	298
	7.10	Power a	and Sample Size for Repeated Measures Designs	301
		7.10.1	Between-Cluster Predictor	301
		7.10.2	Within-Cluster Predictor	303
	7.11	Summa	ary	304
	7.12	Further	Notes and References	305
		7.12.1	Missing Data	305
		7.12.2	Computing	306
	7.13	Probler	ms	306
	7.14	Learnir	ng Objectives	308
8	Gener	ralized L	inear Models	309
•	8.1		le: Treatment for Depression	309
		8.1.1	Statistical Issues	310
		8.1.2	Model for the Mean Response	311
		8.1.3	Choice of Distribution	312
		8.1.4	Interpreting the Parameters	312
		8.1.5	Further Notes.	313
	8.2		le: Costs of Phototherapy	314
		8.2.1	Model for the Mean Response	315
		8.2.2	Choice of Distribution	315
		8.2.3	Interpreting the Parameters	316
	8.3		lized Linear Models	
		8.3.1	Example: Risky Drug Use Behavior	
		8.3.2	Modeling Data with Many Zeros	
		8.3.3	Example: A Randomized Trial to Reduce	
			Risk of Fracture	321
		8.3.4	Relationship of Mean to Variance	
		8.3.5	Non-Linear Models	
	8.4		Size for the Poisson Model	325
	8.5	-	ary	328
	8.6		Notes and References	328
	8.7		ns	329
	8.8		ng Objectives	330
9	Stron			
T	Streng 9.1		Causal Inference	331
	7.1	9.1.1	Average Causal Effects	332 332
		9.1.1	Marginal Structural Model	332 333
		7.1.4	iviaigiliai oli uctui ai iviouci	223

Contents xvii

	9.1.3	Fundamental Problem of Causal Inference	333
	9.1.4	Randomization Assumption	
	9.1.5	Conditional Independence	334
	9.1.6	Marginal and Conditional Means	335
	9.1.7	Potential Outcomes Estimation	
	9.1.8	Inverse Probability Weighting	
9.2	Regress	sion as a Basis for Causal Inference	
	9.2.1	No Unmeasured Confounders	338
	9.2.2	Correct Model Specification	338
	9.2.3	Overlap and the Positivity Assumption	338
	9.2.4	Lack of Overlap and Model Misspecification	339
	9.2.5	Adequate Sample Size and Number of Events	341
	9.2.6	Example: Phototherapy for Neonatal Jaundice	341
9.3	Margin	al Effects and Potential Outcomes Estimation	344
	9.3.1	Marginal and Conditional Effects	344
	9.3.2	Contrasting Conditional and Marginal Effects	346
	9.3.3	When Marginal and Conditional	
		Odds-Ratios Differ	346
	9.3.4	Potential Outcomes Estimation	347
	9.3.5	Marginal Effects in Longitudinal Data	350
9.4	Propens	sity Scores	352
	9.4.1	Estimation of Propensity Scores	352
	9.4.2	Effect Estimation Using Propensity Scores	355
	9.4.3	Inverse Probability Weights	356
	9.4.4	Checking for Propensity Score/Exposure Interaction	358
	9.4.5	Addressing Positivity Violations Using Restriction	359
	9.4.6	Average Treatment Effect in the Treated (ATT)	360
	9.4.7	Recommendations for Using Propensity Scores	362
9.5	Time-D	Dependent Treatments	364
	9.5.1	Models Using Time-dependent IP Weights	365
	9.5.2	Implementation	367
	9.5.3	Drawbacks and Difficulties	368
	9.5.4	Focusing on New Users	369
	9.5.5	Nested New-User Cohorts	370
9.6		on	370
9.7	Instrum	ental Variables	373
	9.7.1	Vulnerabilities	375
	9.7.2	Structural Equations and Instrumental Variables	377
	9.7.3	Checking IV Assumptions	377
	9.7.4	Example: Effect of Hormone Therapy on	
		Change in LDL	378
	9.7.5	Extension to Binary Exposures and Outcomes	379
	9.7.6	Example: Phototherapy for Neonatal Jaundice	380
	9.7.7	Interpretation of IV Estimates	382
9.8		vith Incomplete Adherence to Treatment	382
	0 8 1	Intention-to-Treat	382

xviii Contents

		9.8.2	As-Treated Comparisons by Treatment Received	384
		9.8.3	Instrumental Variables	385
		9.8.4	Principal Stratification	385
	9.9	Summar	y	387
	9.10	Further 1	Notes and References	387
	9.11	Problem	s	391
	9.12	Learning	g Objectives	394
10	Predic	tor Selec	tion	395
	10.1		on	396
		10.1.1	Bias-Variance Trade-off and Overfitting	397
		10.1.2	Measures of Prediction Error	397
		10.1.3	Optimism-Corrected Estimates	
			of Prediction Error	398
		10.1.4	Minimizing Prediction Error Without Overfitting	401
		10.1.5	Point Scores	404
		10.1.6	Example: Risk Stratification of Patients	
			with Heart Disease	405
	10.2	Evaluati	ing a Predictor of Primary Interest	407
		10.2.1	Including Predictors for Face Validity	408
		10.2.2	Selecting Predictors on Statistical Grounds	408
		10.2.3	Interactions With the Predictor of Primary Interest	409
		10.2.4	Example: Incontinence as a Risk Factor for Falling	409
		10.2.5	Directed Acyclic Graphs	410
		10.2.6	Randomized Experiments	416
	10.3	Identify	ing Multiple Important Predictors	418
		10.3.1	Ruling Out Confounding Is Still Central	418
		10.3.2	Cautious Interpretation Is Also Key	419
		10.3.3	Example: Risk Factors for Coronary Heart Disease	420
		10.3.4	Allen–Cady Modified Backward Selection	420
	10.4		etails	421
		10.4.1	Collinearity	421
		10.4.2	Number of Predictors	422
		10.4.3	Alternatives to Backward Selection	424
		10.4.4	Model Selection and Checking	425
		10.4.5	Model Selection Complicates Inference	425
	10.5		ry	427
	10.6		Notes and References	427
	10.7		ns	428
	10.8	Learnin	g Objectives	429
11	Missi			431
	11.1	Why M	issing Data Can Be a Problem	432
		11.1.1	Missing Predictor in Linear Regression	432
		11.1.2	Missing Outcome in Longitudinal Data	434

Contents

	11.2	Classifications of Missing Data	437
		11.2.1 Mechanisms for Missing Data	438
	11.3	Simple Approaches to Handling Missing Data	442
		11.3.1 Include a Missing Data Category	442
		11.3.2 Last Observation or Baseline Carried Forward	442
	11.4	Methods for Handling Missing Data	444
	11.5	Missing Data in the Predictors and Multiple Imputation	444
		11.5.1 Remarks About Using Multiple Imputation	446
		11.5.2 Approaches to Multiple Imputation	447
		11.5.3 Multiple Imputation for HERS	449
	11.6	Deciding Which Missing Data Mechanism	
		May Be Applicable	451
	11.7	Missing Outcomes, Missing Completely at Random	452
	11.8	Missing Outcomes, Covariate-Dependent Missing	
		Completely at Random	452
	11.9	Missing Outcomes for Longitudinal Studies,	
		Missing at Random	453
		11.9.1 ML and MAR	455
		11.9.2 Multiple Imputation	456
		11.9.3 Inverse Probability Weighting	456
	11.10	Technical Details About Maximum Likelihood	
		and Data Which are Missing at Random	458
		11.10.1 An Example of the EM Algorithm	458
		11.10.2 The EM Algorithm Imputes the Missing Data	460
		11.10.3 ML Versus MI with Missing Outcomes	461
	11.11	Methods for Data that are Missing Not at Random	461
		11.11.1 Pattern Mixture Models	461
		11.11.2 Multiple Imputation Under MNAR	463
		11.11.3 Joint Modeling of Outcomes and the	
		Dropout Process	463
	11.12	Summary	463
	11.13	Further Notes and References	464
	11.14	Problems	465
	11.15	Learning Objectives	467
12	Compl	ex Surveys	469
	12.1	Overview of Complex Survey Designs	470
	12.2	Inverse Probability Weighting	471
		12.2.1 Accounting for Inverse Probability Weights	
		in the Analysis	473
		12.2.2 Inverse Probability Weights and Missing Data	473
	12.3	Clustering and Stratification	474
		12.3.1 Design Effects	474
	12.4	Example: Diabetes in NHANES	475

xx Contents

	12.5	Some De	etails	477
		12.5.1	Ignoring Secondary Levels of Clustering	477
		12.5.2	Other Methods of Variance Estimation	477
		12.5.3	Model Checking	478
		12.5.4	Postestimation Capabilities in Stata	478
		12.5.5	Other Statistical Packages for Complex Surveys	479
	12.6	Summar	y	479
	12.7	Further I	Notes and References	479
	12.8	Problem	s	480
	12.9	Learning	g Objectives	480
13	Summ	ary		481
	13.1	Introduc	tion	481
	13.2	Selecting	g Appropriate Statistical Methods	482
	13.3	Planning	and Executing a Data Analysis	483
		13.3.1	Analysis Plans	483
		13.3.2	Choice of Software	484
		13.3.3	Data Preparation	484
		13.3.4	Record Keeping and Reproducibility of Results	484
		13.3.5	Data Security	485
		13.3.6	Consulting a Statistician	485
		13.3.7	Use of Internet Resources	486
	13.4	Further 1	Notes and References	486
		13.4.1	Multiple Hypothesis Tests	486
		13.4.2	Statistical Learning	487
Ref	ferences			489
Ind	lev			501