Contents

Contents

1. Preface and objectives	1
2. Introduction to the subject area	5
2.1. The comparison of small and large blast furnaces	7
2.2. Thermal and chemical reserve zones in BF	12
2.3. Temperature, gas composition and burden layer profile in BF	16
2.4. The lowering of TRZ temperature in BF by using of SRP	23
2.5. Hardening processes of iron ore agglomerate	29
2.5.1. Fire-hardening	30
2.5.2. Cement-bonded curing process	30
3. Theoretical analysis	33
3.1. Reduction kinetics of the conventional iron ore pellet	33
3.2. Literature review on self-reducing pellet (SRP)	34
3.2.1. Reduction mechanism and behavior of SRP	34
3.2.2. Reduction kinetics of SRP under inert atmosphere	37
3.2.3. Reaction model of SRP for blast furnace condition	43
3.2.4. Volume change of SRP during reduction	46
3.2.5. Cement bonded SRP and the strength requirement aspect of	
BF charging material	47
3.2.6. SRP with embedded charcoal as the biomass charge in BF	53
3.3. Modeling of the reduction kinetics of SRP	54
4. Methodology of investigation	59
4.1. The preparation of self-reducing pellet samples	61
4.2. Experimental setup and the results analysis methods	64
5. Experimental results and discussion	72
5.1. Reduction behaviors of SRP under TRZ related conditions	72
5.1.1. Isothermal reduction in the Tammann furnace	72
5.1.2. Non-isothermal reduction in the Tammann furnace	83
5.1.3. TG/DTA tests and the starting temperature of the	
Boudouard reaction	86
5.2 Hardening and strength of SRP	97

Contents

5.2.1. Strength after fire-hardening process	97
5.2.2. Strength after cement- bonded curing	99
6. Modeling and calculation	101
6.1. Calculation of the reduction kinetics model	101
6.2. Calculation works based on the RIST diagram: the decreasing	
of reducing agent rate, after lowering TRZ temperature	108
6.2.1. An initial simplified mathematical description for mass-	
and heat-balance	109
6.2.2. A fully predictive mathematical description for mass- and	
heat-balance based on RIST's model	116
6.2.3. Environmental aspects and resource efficiency	126
7. Summarizing discussion and outlook	129
8. Conclusions	137
9. References	139
Appendix	153
Curriculum vitae	172
Abstract	173