Contents

Fore	Foreword		xi
Pref	Preface		
1	An Int	troduction to Modern Power Systems	1
1.1	Introdu		1
1.2	The Sn	nart Grid Architecture Model	3
1.3	The Electric Power System		9
	1.3.1	The Structure of the Power System	9
	1.3.2	The Fundamentals of Power System Analysis	9
1.4	Energy	Management Systems	13
1.5	Computational Techniques		15
	1.5.1	Optimization Methods and Optimal Power Flow	15
	1.5.2	Security-Constrained Optimal Power Flow	16
1.6	Microg	rids	16
1.7	The Re	gulation of the Electricity System and the Electrical Markets	17
1.8	Exercis	e: A Load-Flow Algorithm with Gauss-Seidel	20
2	Genera	ating Systems Based on Renewable Power	25
2.1	Renewable Power Systems		25
	2.1.1	Wind Power Systems	32
	2.1.2	Solar Photovoltaic Power Systems	34
2.2	Renewable Power Generation Technologies		34
	2.2.1	Renewable Power Generation Technology Based on Rotative	
		Electrical Generators	36
	2.2.2	Wind Turbine Technology	37
	2.2.3	Photovoltaic Power Plants	53
2.3	Grid Code Requirements		
2.4	Conclusions		59

3	Frequency Support Grid Code Requirements for Wind Power Plants	61		
3.1	A Review of European Grid Codes Regarding Participation			
211	in Frequency Control			
	3.1.1 Nomenclature and the Definition of Power Reserves	63		
	3.1.2 The Deployment Sequence of Power Reserves for			
	Frequency Control	65		
	3.1.3 A Detailed View on the Requirements for WPPs in the Irish Grid Code	71		
	3.1.4 A Detailed View on the Requirements for WPPs in the UK Grid Code	73		
	3.1.5 Future Trends Regarding the Provision of Primary Reserves and Synthetic Inertia by WPPs	76		
3.2	Participation Methods for WPPs with Regard to Primary Frequency			
	Control and Synthetic Inertia	79		
	3.2.1 Deloading Methods of Wind Turbines for Primary			
	Frequency Control	79		
	3.2.2 Synthetic Inertia	87		
3.3	Conclusions	91		
4	Energy Storage Technologies	93		
4.1	Introduction	93		
4.2	The Description of the Technology	94		
	4.2.1 Pumped Hydroelectric Storage (PHS)	94		
	4.2.2 Compressed Air Energy Storage (CAES)	96		
	4.2.3 Conventional Batteries and Flow Batteries	97		
	4.2.4 The Hydrogen-Based Energy Storage System (HESS)	112		
	+.2.5 The Flywheel Energy Storage System (FFSS)	114		
	4.2.0 Superconducting Magnetic Energy Storage (SMES)	116		
	1.2.7 The Supercapacitor Energy Storage System	120		
4.2	7.2.0 Notes on Other Energy Storage Systems	125		
4.3	Tower Conversion Systems for Electrical Storage	129		
	4.5.1 Application: Electric Power Systems	129		
	4.5.2 Other Applications I: The Field of Flectromobility	134		
	other Applications II: Buildings	137		
4.4	4.3.4 The Battery Management System (BMS) Conclusions	139		
1. 1	Conclusions	141		
5	Cost Models and Economic Analysis			
5.1	muoduction	143		
5.2	A Cost Model for Storage Technologies	143		
	5.2.1 The Capital Costs	145		
	5.2.2 Operating and Maintenance Costs	145		
		147		

	7.3.3	The Design of the High-Level Energy Management			
		Algorithm for the Flywheel	226		
	7.3.4	Experimental Validation	230		
7.4	Conclu	-	241		
8	Mid- a	nd Long-Term Applications of Energy Storage Installations			
		Power System	243		
8.1	Introdu	•	243		
8.2	A Desc	ription of Mid- and Long-Term Applications	243		
	8.2.1	Load Following	243		
	8.2.2	Peak Shaving	247		
	8.2.3	Transmission Curtailment	248		
	8.2.4	Time Shifting	248		
	8.2.5	Unit Commitment	249		
	8.2.6	Seasonal Storage	250		
8.3	Example: The Sizing of Batteries for Load Following in an Isolated				
	Power S	System with PV Generation	250		
	8.3.1	Step 1: Typical Load and PV Generation Profiles	253		
	8.3.2	Step 2: The Voltage Level of the Battery Bank	255		
	8.3.3	Step 3: The Typical Daily Current Demand for the	~.'.'		
		Battery Bank	257		
	8.3.4	Step 4: The Number of Days of Autonomy	258		
	8.3.5	Step 5: The Total Daily Demand for the Battery Bank	259		
	8.3.6	step o: The Capacity of the Battery	260		
	8.3.7	Step 7: The Number of Cells in Series	260		
	8.3.8	Step 8: The Number of Parallel Strings of Cells in Society	260		
	8.3.9	Step 9: Check the Admissible Momentary Current for the	201		
		Dailery Cells	261		
	8.3.10	Step 10: The Maximum Charge and Discharge Currents for	201		
	-	The Dunce y Dunk Considering PV Generation	2(1		
.	8.3.11	Step 11: The Selection of Power Invertors	261		
8.4	Conclu	sions	265		
Refe	rences		265		
Index					

	5.2.3	Replacement Costs	149	
	5.2.4	End-of-Life Costs	150	
	5.2.5	The Synthesis of a Cost Model	151	
5.3	An Ex	ample of an Application	153	
	5.3.1	The Collection of Data for Evaluation of the Cost		
		Model	154	
	5.3.2	Analysis of the Results	158	
5.4	Conclu	usions	162	
6		ling, Control, and Simulation	163	
6.1	Introdu		163	
6.2	Model	ing of Storage Technologies: A General Approach Orientated		
	to Sim	ulation Objectives	164	
6.3		odeling and Control of the Grid-Side Converter	166	
	6.3.1	Modeling	166	
	6.3.2	Control	169	
6.4	The Modeling and Control of Storage-Side Converters and			
	-	e Containers	174	
	6.4.1	Supercapacitors and DC–DC Converters	174	
	6.4.2		180	
	6.4.3	Flywheels and AC-DC Converters	190	
6.5		An Example of an Application: Discharging Storage Installations		
	Following Various Control Rules		199	
	6.5.1	Input Data	199	
	6.5.2		201	
	6.5.3		203	
	6.5.4	Discharge (Charge) Modes for Flywheels	204	
6.6	Conclu	isions	207	
7		Term Applications of Energy Storage Installations		
		Power System	209	
7.1	Introdu		209	
7.2		cription of Short-Term Applications	210	
		Fluctuation Suppression	210	
	7.2.2		212	
	7.2.3	Voltage Control Support	213	
	7.2.4	Oscillation Damping	214	
	7.2.5	Primary Frequency Control	215	
7.3	An Example of Fluctuation Suppression: Flywheels for Wind			
		Smoothing	217	
	7.3.1	The Problem of Wind Power Smoothing	217	
	7.3.2	Optimal Operation of the Flywheel for Wind Power		
		Smoothing	220	