Contents

		*	
List o	f figure f table: luction	3	viii ix xi
PART		ONTROLLING POLLUTION BY ADJUSTING THE OMBINATION OF GOODS PRODUCED	
2. P 3 P 4 N 5 S	ollution ollution Ion-cor tochast	on function of the firm In damage to households In damage to firms Invexity and large polluting firms It pollution damage It is polluting firm	3 24 38 51 61 71
PAR7	Α	CONTROLLING POLLUTION BY PREVENTING OR BATING EMISSIONS AND BY ADJUSTING THE COMBINATION OF GOODS PRODUCED	
8 R 9 E 10 S	ecyclir nd-of- _l ubsidiz	n prevention ng pollutive output pipe abatement ping abatement ping abatement ping abatement ping costs of pollution control	89 102 112 122 137
PART]	CONTROLLING POLLUTION BY AVOIDING EXPOSURE, BY PREVENTING OR ABATING EMISSIONS, AND BY ADJUSTING THE COMBINATION OF GOODS PRODUCED	
13 T 14 A	The quadruple equality Abatement versus avoidance		151 171 186 205
Name		symbols	230 240 247 249

Figures

1.1	Labour-dominant technology	13
1.2	Capital-dominant technology	14
1.3	Dominance reversal	15
2.1	The statistical value of a human life	28
2.2	Decreasing marginal pollution damage	33
2.3		35
4.1	Concave and convex-concave production possibility frontiers	53
4.2		55
6.1	Stolper-Samuelson adjustment when a good is taxed	73
6.2	Average cost curves when emissions decline with output	76
6.3	T	82
7.1	Production possibility frontier in linear activity analysis	92
7.2	Production possibility frontier generated first by substituting	
	a clean for a toxic input and then by using a pollution-free process	97
11.1	Laissez-faire allocation with zero transactions costs, distortionary	
	funding of transactions costs and Pigouvian funding of	
	transactions costs	146
12.1	The expected marginal revenue product of the avoidance input	162
12.2		
	more of the avoidance input is employed	167
14.1	The case of weak interaction	189
14.2	The case of strong interaction	190
15.1	Marginal curves in laissez-faire equilibrium	216
15.2	Marginal curves in the Pareto optimum	217
15.3	General Pigouvian equilibrium with marginal cost and damage	
	curves	220
15.4	The case of the downward-sloping marginal pollution damage	
	curve	226

Tables

1.1	Efficient allocations of inputs with three classes of production	_
	functions	8
1.2	The computer program	18
2.1	Sequence of tax rates in a Pigouvian algorithm	29
3.1	Laissez-faire, low-tax and Pigouvian solutions of the numerical	
	example	45
3.2	Laissez-faire and the Pareto-optimal competitive equilibria in the	
	numerical example of reciprocal and reflexive pollution damage	49
4.1	Laissez-faire and Pigouvian allocations along the non-convex	
	production possibility frontier when the community utility	
	function is $[x^{0.9} + (7.566163)y^{0.9}]$	56
5.1	Laissez-faire and Pigouvian equilibria when consumers are	
	risk-neutral and when they are risk-averse	69
6.1	Simulation models in which the emission rate varies with the	
	output of the polluting firm	77
6.2	Optimal solutions of the Carlton and Loury model	84
7.1	Laissez-faire and Pigouvian allocations along the frontier	
	generated by two substitutable processes	98
8.1	Laissez-faire and Pigouvian equilibrium of the recycling economy	107
9.1	Optimal solutions of the Harford model	119
10.1	Pigouvian tax versus subsidy	126
10.2	Laissez-faire and Pigouvian allocations when households as well	
	as firms pollute	134
11.1	Transactions costs of Pigouvian taxation	142
11.2	Transactions funding and the double dividend	144
12.1	Numerical example of efficient avoidance by receptor firms	157
12.2	Expected profit-maximizing solutions for the risk-neutral and	
	risk-averse firms	165
12.3	Input and output possibilities for the risk-averse firm relative to	
	the risk-neutral firm	168
13.1	Sequence of Pigouvian taxes	177
13.2	Alternative Pigouvian tax rates when the pollutant concentration	
	is uncertain and exposure-avoiding receptors are risk-averse	182
14.1	A misleading sequence of Pigouvian signals	191

х	Pollution and the firm	
	The Pigouvian algorithm in the numerical example of indoor and outdoor pollution	202 215 225
15.1 15.2	Simulating the taxation of expected spilled oil Optimal solutions with low, medium and high pollution damage	