CONTENTS

1	Intro	duction: viruses, immunity, equations	1
	1.1	Viruses	1
	1.2	Immunity	3
		1.2.1 B cells	3
		1.2.2 T cells	4
	1.3	Mathematical biology	6
	1.4	Further reading	9
2	HIV		10
	2.1	Discovery	10
	2.2	Some basic facts about HIV	11
	2.3	Treatment	13
	2.4	Origins of HIV	14
	2.5	Further reading	15
3	The basic model of virus dynamics		16
	3.1	The model	17
	3.2	Dynamics	18
		Equilibrium	21
	3.4	The primary phase of HIV and SIV infection	21
		3.4.1 Estimating R_0	24
		3.4.2 Vaccination to reduce R_0	25
	3.5	Further reading	26
4	Anti-	viral drug therapy	27
	4.1	Theory	30
		4.1.1 HIV: reverse transcriptase inhibitors	30
		4.1.2 HIV: protease inhibitors	32
		4.1.3 Rise of uninfected cells	34
		4.1.4 Long-lived infected cells	34
	4.2	Experiment	36
		4.2.1 Short-term decay	36
		4.2.2 CD4 cell increase	38
		4.2.3 Long-lived infected cells	39
		4.2.4 Virion turnover	40
		4.2.5 Triple-drug therapy	41
		4.2.6 Eradication	42
	4.3	Further reading	43

x Contents

5	Dyna	mics of hepatitis B virus	44
	5.1	Theory	45
	5.2	Experiment	46
	5.3	Comparing HBV and HIV	50
	5.4	Further reading	51
6	Dyna	mics of immune responses	52
	6.1	A self-regulating CTL response	53
		6.1.1 Persistent infection or clearance	55
		6.1.2 Variation in CTL responsiveness leads to a negative	
		correlation between virus load and the magnitude of	
		the CTL response	56
	6.2	Other self-regulating immune responses	56
	6.3	A nonlinear CTL response: predator-prey dynamics	58
		6.3.1 Virus load reduction	59
		6.3.2 Variation in immune responsiveness	59
	6.4	A linear immune response	61
	6.5	Dynamic elimination	63
	6.6	The simplest models of immune response dynamics	63
		6.6.1 Variation in immune responsiveness	66
	6.7	Experimental observations: HTLV-1 and HIV-1, 2	66
	6.8	Further reading	67
7	7 How fast do immune responses eliminate infected cells?		69
	7.1	The rate of CTL-mediated lysis in vitro	71
	7.2	The dynamics of CTL-mediated lysis	74
		7.2.1 Model 1	75
		7.2.2 Model 2	76
	7.3	Virus decay slopes	77
		Comparing HIV and HBV	80
	7.5	Further reading	81
8	8 What is a quasispecies?		82
	8.1	More than atoms in our universe	83
	8.2	Quasispecies live in sequence space	84
	8.3	t inference randocupes	84
	8.4		85
	8.5		86
	8.6	Tamas paras matris	8
	8.7	Viral quasispecies	88
	8.8	Antigenic escape and optimum mutation rate	89
	8.9	Further reading	89

Contents

хi

9	The	frequency of resistant mutant virus	
		re anti-viral therapy	90
	9.1	Wild-type and mutant differ by 1-point mutation	9
	9.2	Wild-type and mutant differ by 2-point mutations	92
	9.3	Wild-type and mutant differ by <i>n</i> -point mutations	93
	9.4	Some practical implications	95
	9.5	Further reading	96
10	G		97
	10.1	The basic model	100
	10.2	Emergence of resistance during drug treatment	101
		10.2.1 Equilibrium properties	102
		10.2.2 Total gain of CD4 cells and total reduction of virus load	
		are independent of inhibition of sensitive virus	103
		10.2.3 A stronger drug selects for faster emergence of	
		resistance	105
	10.3	The probability of producing a resistant mutant during	
	10.4	therapy	105
	10.4	Summary	108
	10.5	Further reading	109
11	Timing the emergence of resistance		
	11.1	Theory	110 110
	11.2	Observation	116
		11.2.1 The probability of producing replication	
		competent provirus	117
	11.3	Summary	121
	11.4	Further reading	121
12	Simple antigenic variation		123
	12.1	The basic model of antigenic variation	125
	12.2	Antigenic variation of HIV: diversity threshold	129
	12.3	Three kinds of observed lentivirus infections	133
	12.4	Further reading	136
13	Advanced antigenic variation		137
	13.1	Immune response can select for or aganist antigenic diversity	138
		13.1.1 Cross-sectional comparisons	142
	13.2	Antigenic variation of HIV with different parameter values	143
	10.5	13.2.1 Cross-sectional comparisons	146
		Comparison with data	147
	13.4	Further reading	148
14	Multi	ple epitopes	149
	14.1	Experimental evidence	153
	14.2	The simplest multiple epitope model	155

xii Contents

	14.3	Different parameters for different mutants	157
		14.3.1 What determines immunodominance?	161
	14.4	Activated CTLs arise from inactivated precursors	162
		14.4.1 The neutral case: all mutants have the same	
		replication rates	163
		14.4.2 The mutants have different replication rates	164
		14.4.3 The limit of large η	167
	14.5	The 2×1 case	167
		14.5.1 $\eta = 0$	167
		14.5.2 $\eta > 0$	169
		14.5.3 The limit of large η	174
	14.6	Cross-reactivity within the variants of a given epitope	174
	14.7	Immunogenicity and intracellular competition	175
	14.8	Immunotherapy	177
	14.9	Summary	179
	14.10	Further reading	181
15	Everyt	hing we know so far and beyond	182
	15.1	The mechanism of HIV-1 disease progression	182
	15.2	How to overcome HIV	186
	15.3	A quantitative immunology and virology	187
	15.4	Further reading	187
Apj	pendix A	A: Dynamics of resistance in different types of infected cells	188
Apj	oendix I	3: Analysis of multiple epitope dynamics	196
	B.1	An invariant of motion	196
	B.2	Local dynamics of a multiple epitope equation	197
	B. 3	The 2×2 system	200
		B.3.1 $\eta = 0$	200
		B.3.2 $\eta > 0$	202
		B.3.3 The limit of large η	204
	B.4	Intracellular competition between epitopes	207
Ref	erences		209
Index			233