Contents

Series Editor's Preface	v
Preface	xii
CHAPTER I. Third Order Linear Homogeneous Differential	
Equations in Normal Form	1
§1. Fundamental Properties of Solutions of the Third Order	
Linear Homogeneous Differential Equation	1
1. The Normal Form of a Third Order Linear Homoge-	
neous Differential Equation	1
2. Adjoint and Self-adjoint Third Order Linear Differential	
Equations	2
3. Fundamental Properties of Solutions	4
4. Relationship between Solutions of the Differential	
Equations (a) and (b)	5
5. Integral Identities	7
6. Notion of a Band of Solutions of the First, Second and	
Third Kinds	8
7. Further Properties of Solutions of the Differential Equa-	
tion (a) Implied by Properties of Bands	13
8. Weakening of Property (v) for the Laguerre Invariant	18
§2. Oscillatory Properties of Solutions of the Differential Equa-	
tion (a)	21
1. Basic Definitions	21
2. Sufficient Conditions for the Differential Equation (a) to	
Be Disconjugate	22

X Contents

	3.	Sufficient Conditions for Oscillatoricity of Solutions of	
		the Differential Equation (a)	26
	4.	Further Conditions Concerning Oscillatoricity or Non-	
		oscillatoricity of Solutions of the Differential Equation	
		(a)	31
	5.	Relation between Solutions without Zeros and Oscil-	
		latoricity of the Differential Equation (a)	34
	6.	Sufficient Conditions for Oscillatoricity of Solutions of	
		the Differential Equation (a) in the Case $A(x) \ge 0$,	
		$x \in (a, \infty)$	44
	7.	Conjugate Points, Principal Solutions and the Relation-	
		ship between the Adjoint Differential Equations (a) and	
		(b)	49
	8.	Criteria for Oscillatoricity of the Differential Equations	
		(a) and (b) Implied by Properties of Conjugate Points	60
	9.	Further Criteria for Oscillatoricity of the Differential	
		Equation (b)	75
	10.	The Number of Oscillatory Solutions in a Fundamental	
		System of Solutions of the Differential Equation (a)	84
	11.	Criteria for Oscillatoricity of Solutions of the Differential	
		Equation (a) in the Case that the Laguerre Invariant	
		Does Not Satisfy Condition (v)	90
	12.	The Case, When the Laguerre Invariant Is an Oscillatory	
		Function of x	98
	13.	The Differential Equation (a) Having All Solutions	
		Oscillatory in a Given Interval	106
§3.		emptotic Properties of Solutions of the Differential Equa-	
	tion	s (a) and (b)	117
	1.	Asymptotic Properties of Solutions without Zeros of the	
		Differential Equations (a) and (b)	117
	2.	Asymptotic Properties of Oscillatory Solutions of the	
		Differential Equation (b)	136
	3.	Asymptotic Properties of All Solutions of the Differen-	
		tial Equation (a)	143
§4.		andary Value Problems	155
	1.	The Green Function and Its Applications	155

Contents Xi

	2. Further Applications of Integral Equations to the Solu-	
	tion of Boundary-value Problems	162
	3. Generalized Sturm Theory for Third Order Boundary-	
	value Problems	165
	4. Special Boundary-value Problems	180
CH.	APTER II. Third Order Linear Homogeneous Differential	
	Equations with Continuous Coefficients	190
85	Principal Properties of Solutions of Linear Homogeneous	170
30.	Third Order Differential Equations with Continuous Coeffi-	
	cients	190
	1. Principal Properties of Solutions of the Differential	170
	Equation (A)	190
	2. Bands of Solutions of the Differential Equation (A)	193
	3. Application of Bands to Solving a Three-point Bound-	2,0
	ary-value Problem	196
§6.	Conditions for Disconjugateness, Non-oscillatoricity and	-, ,
-	Oscillatoricity of Solutions of the Differential Equation (A)	198
	1. Conditions for Disconjugateness of Solutions of the	1,0
	Differential Equation (A)	198
	2. Solutions without Zeros and Their Relation to Oscil-	1,0
	latoricity of Solutions of the Differential Equation (A)	208
	3. Conditions for the Existence of Oscillatory Solutions of	200
	the Differential Equation (A)	211
	4. On Uniqueness of Solutions without Zeros of the Dif-	
	ferential Equation (A)	212
	5. Some Properties of Solutions of the Differential Equa-	212
	tion (A) with $r(x) \leq 0$	214
§7.	Comparison Theorems for Differential Equations of Type	2. I T
	(A) and Their Applications	216
	1. Comparison Theorems	217
	2. A Simple Application of Comparison Theorems	219
	3. Remark on Asymptotic Properties of Solutions of the	417
	Differential Equation (A)	220
	-	220

xii Contents

CHAPTER III. Concluding Remarks			
1. Special Forms of Third Order Differential Equations	222		
2. Remark on Mutual Transformation of Solutions of Third			
Order Differential Equations	224		
CHAPTER IV. Applications of Third Order Linear Differential			
Equation Theory	227		
§8. Some Applications of Linear Third Order Differential Equa-	,		
tion Theory to Non-linear Third Order Problems	227		
1. Application of Quasi-linearization to Certain Problems			
Involving Ordinary Third Order Differential Equations	227		
2. Three-point Boundary-value Problems for Third Order			
Non-linear Ordinary Differential Equations	238		
3. On Properties of Solutions of a Certain Non-linear Third			
Order Differential Equation	240		
§9. Physical and Engineering Applications of Third Order Dif-			
ferential Equations	247		
1. On Deflection of a Curved Beam	248		
2. Three-layer Beam	255		
3. Survey of Some Other Applications of Third Order			
Differential Equations	257		
References	259		
Subject Index	269		