Inhalt

Vorwort	V	c) Palygorskit und Sepiolit	43
Einleitung	1	d) Allophane	43 44
		, ,	44
A. Entstehung und Zusammensetzung der Böden	3	3. Bestimmung	77
boden	-	minerale	45
া. Anorganisches Ausgangsmaterial	3	a) Bildung aus Glimmern und Chlo-	
1. Minerale	3	riten	45
•2. Gesteine	5	b) Bildung aus Zerfallsprodukten von	
a) Magmatite	5	Silicaten	46
b) Sedimente	6	c) Tonmineralumwandlung	47
c) Metamorphite	10	d) Bildung in Abhängigkeit vom Ausgangsgestein	48
II. Verwitterung	11	5. Vorkommen in Böden	49
· 1. Physikalische Verwitterung	11	or vorman in bount	• •
2. Chemische Verwitterung	12	VII. Organische Substanz	50
a) Lösung	12	1. Definition, Bestimmung und Ein-	
b) Hydrolyse	13	teilung	50
c) Oxidation	14 15	2. Organische Ausgangsstoffe und ihre	
	13	Umwandlung	51
3. Verwitterungsstabilität von Mine- ralen	15	3. Huminstoffe	53
4. Verwitterungsstabilität von Gesteinen	17	a) Einteilung, Zusammensetzung und	
5. Verwitterungsgrad von Böden	17	Eigenschaften der Huminstoffe .	53
5. Verwitterungsgrad von boden	17	b) Bildung von Huminstoffen	57
III. Körnung (Textur)	18	 Gleichgewicht zwischen Anlieferung und Abbau der organischen Substanz 	59
1. Kornformen, Oberfläche, Korngrö-		a) Mineralisierung	59
ßenfraktionen	18	b) Einfluß von Klima, Wassergehalt	
2. Körnungsklassen (Bodenarten)	20	und Relief	60
3. Einfluß der Körnung auf die Eigen-		c) Einfluß der Körnung	61
schaften und die Ertragfähigkeit der	22	d) Einfluß der Nutzungsform	61
Böden	22	e) Einfluß der Düngung f) pH-Einfluß	63
IV. Mineralzusammensetzung von Böden .	23	5. Bedeutung der organischen Substanz	0,
		für Boden und Pflanze	67
V. Oxide des Si, Al, Fe, Ti und Mn und		a) Chemische und bodenbiologische	٠,
ihre Löslichkeit	25	Wirkungen	67
1. Siliciumdioxid und Kieselsäure	25	b) Physikalische Wirkungen	68
a) Orthokieselsäure und ihre Poly- merisation	26	c) Wirkstoffe	6
b) Kieselsäuregehalt der Bodenlösung	26	VIII On manifest to V. I. I	
2. Aluminiumoxide	27	VIII. Organo-mineralische Verbindungen	69
3. Eisenoxide	28	IX. Bodenorganismen	7
a) Formen	28	1. Einteilung und Beschreibung der Bo-	•
b) Entstehung und Vorkommen	29	denorganismen	7
c) Löslichkeit	30	a) Flora	7
d) Gehalt in Böden	31	b) Fauna	7
e) Bestimmung	31	2. Lebensbedingungen der Bodenorga-	
4. Titanoxide	32	nismen	7
5. Manganoxide	32	a) Nahrung	7
VI. Tonminerale	33	b) Feuchtigkeit	7.
1. Allgemeine Eigenschaften	33	d) Temperatur	7
a) Gitterbau	33	e) pH-Wert	7
b) Ladung der Silicatschichten	36	3. Zahl und Verteilung der Bodenorga-	
2. Tonminerale der Böden	37	nismen	7
a) Zweischichtminerale	37	a) Durchschnittswerte	7
b) Dreischichtminerale	38	b) Abhängigkeit von Profiltiefe,	

Körnung, Gehalt an organischer		(1) pH in wäßriger Suspension,	
Substanz und Jahreszeit	76	pH(H ₂ O)	114
		(2) pH in salzhaltiger Suspension,	
c) Biozönosen	77		112
4. Einfluß der Bodenorganismen auf die		pH(CaCl ₂), pH(KCl)	115
Bodeneigenschaften	78	(3) Kalkpotential	115
a) Chemische Eigenschaften	78	b) pH-beeinflussende Faktoren	115
b) Physikalische Eigenschaften	80	(1) Kationenbelag und Salze	116
c) Profilbildung	81	(2) Basensättigung	116
	01	(3) Redoxreaktionen	117
5. Einfluß von Kulturmaßnahmen auf		(4) Jahreszeitliche und örtliche	
das Bodenleben	81	pH-Schwankungen	117
B. Eigenschaften der Böden	83	4. Al-Konzentration in der Boden-	
D. Ligenstation and Double	0.5	lösung	118
I. Kationenaustausch	83	5. pH-Einfluß auf Böden und Pflanzen	118
1. Allgemeines über Sorptionsvorgänge	83	6. Optimales pH in Böden	121
2. Prinzip des Kationenaustausches und	•	7. Kalkbedarf und Kalkung	122
	02	7. Rainbedail did Raindig	122
Grundbegriffe	83	IV. Redoxreaktionen	125
3. Ursachen und Ausmaß des Kationen-	0.4	1. Allgemeines	125
austausches	84		
a) Spezifische Oberfläche	84	2. E-pH-Stabilitätsdiagramme	
b) Art der Ladung	85	3. Redoxsysteme in Böden	127
c) Tonminerale	85	4. Redoxpotentiale von Böden	129
d) Kieselsäure, Al- und Fe-oxide.	88	Tr Tri I I I I I I I I I I I I I I I I I I I	4.30
e) Organische Substanz	89	V. Flockung und Peptisation	129
4. Elektrische Doppelschicht der Aus-		1. Energetische Wechselwirkung zwi-	
tauscher	89	schen Bodenkolloiden	130
a) Allgemeines	89	2. Einfluß von Kationenbelag und Wer-	
b) Hydratation der Kationen	89	tigkeit auf die Flockung	131
5. Beziehungen zwischen der Kationen-		3. Aufbau der Flocken	133
zusammensetzung der Innen- und			155
Außenlösung	92	4. Einfluß des elektrokinetischen Po-	
a) Allgemeines	92	tentials	133
b) Eigenschaften der Kationen	94	NI Padamasina	134
c) Eigenschaften der Austauscher.	96	VI. Bodengefüge	
	70	1. Gefügeformen	134
d) Gleichungen des Kationenaustau-	-00	a) Einzelkorngefüge	134
sches	99	b) Kohärentgefüge	136
6. Kationenaustauschverhältnisse von		c) Aggregatgefüge	136
Böden	101	d) Mikrogefüge	138
a) Austauschkapazität (AK)	101	2. Lagerungsdichte und Porenanteil	138
b) Austauschbare Kationen	103	a) Kenngrößen (Lagerungsdichte, Po-	
c) Sorptionsverhältnisse in Boden-		renvolumen, Porenziffer)	138
profilen	104	b) Porenvolumen in Böden	139
d) Selektivitätsverhältnisse	105		
7. Bestimmung	105	3. Eigenschaften des Porensystems	140
		a) Porenformen	140
II. Anionenadsorption	106	b) Porengrößenbereiche	141
1. Sorptionsmechanismus und Sorbenten	106	c) Porengrößenverteilung (Porung).	
		d) Veränderungstendenzen	142
2. Faktoren der Anionenadsorption	107	(1) Sandböden	142
a) Konzentration der Außenlösung.	107	(2) Tonböden	143
b) Art der Anionen	108	(3) Anthropogene Veränderungen	144
c) pH-Wert	109	4. Stabilität des Bodengefüges	144
III. Bodenacidität	110	a) Kräfte und Stabilität	144
	110	b) Lagerungsdichte als Gleichge-	
1. Vorgang der Bodenversauerung	110	wichtslage	146
2. Gesamtacidität und Säuregruppen	111	(1) Verdichtungen	148
a) Austauschbares Aluminium	112	(2) Lockerungen	148
b) Hydroxo-Al-Polymere	112	c) Quellung und Schrumpfung	149
c) Organische Säuregruppen	113	d) Stabilisierende Stoffe	151
d) Bestimmung der Gesamtacidität.	113	(1) Einfluß von organischen Stof-	
3. pH-Wert	113	fen	151
a) Methoden	114	(2) Einfluß von Al- und Fe-oxiden	153

d) Verteilung des anorganischen Bo-		(3) Mull	291
denphosphors	241	b) Hydromorphe Humusformen .	291
e) Löslichkeit des Bodenphosphors	242	3. Gefügebildung	291
f) Mobilisierung des Bodenphos-		4. Tonverlagerung	292
phors	247	5. Podsolierung	295
g) P-Verfügbarkeit in Böden	248		296
h) P-Düngung		6. Hydromorphierung	
i) P-Auswaschung		7. Carbonatisierung	298
10. Schwefel		8. Versalzung	298
11. Mangan	256	a) Natürliche Versalzung	298 299
12. Eisen	259	c) Vegetation und Melioration	300
13. Kupfer	259	9. Turbationen	301
14. Zink	261	a) Bioturbation	301
15. Bor	262	b) Kryoturbation	302
16. Molybdän		c) Hydroturbation	302
17. Chlor		10. Stoffumlagerungen in der Landschaft	303
18. Kobalt		a) Massenversatz am Hang	303
19. Silicium		b) Bodenerosion durch Wasser	304
20. Konzentrationsschäden		c) Bodenerosion durch Wind	306
		d) Umlagerungen durch Hangzug-	200
21. Ertrags- und Düngerentwicklung .	267	wasser	308
XII. Anorganische Schadstoffe	1	11. Profildifferenzierung	309
1. Fluor	2	III. Bezeichnung der Bodenhorizonte	311
2. Selen, Nickel		•	
3. Blei		IV. Bodensystematik	313
4. Quecksilber		1. Entwicklung der Bodensystematik .	313
5. Cadmium		2. Klassifikationssysteme in Deutsch-	
5. Caumun	2/3	land	314
XIII. Verhalten von organischen Bioziden in		3. Klassifikationssysteme in den USA .	317
Böden	274	4. Bodeneinheiten der Weltbodenkarte	320
1. Adsorption, Verlagerung und Ver-		5. Numerische Klassifikation	321
dampfung	274	T Del Mari	222
2. Chemische und mikrobiologische Um-		V. Böden Mitteleuropas	322
wandlung	276	1. Landböden (Terrestrische Böden)	322 322
3. Veränderung des Organismenbesatzes	270	a) Rohböden	324
durch Biozide	278	c) Rendzina	325
		d) Pararendzina	327
C. Bodengenetik und Bodensystematik	279	e) Schwarzerde (Tschernosem)	327
I. Faktoren der Bodenentwicklung	280)f) Braunerde	330
1. Klima		g) Terra fusca	333
·2. Ausgangsgestein		h) Parabraunerde	334
3. Relief		i) Podsol	336 338
4. Wasser		2. Stau- und Grundwasserböden (Hydro-	
		morphe Böden)	340
5. Fauna und Flora		a) Pseudogley	340
6. Menschliche Tätigkeit	284	b) Stagnogley	342
II. Prozesse der Bodenentwicklung	286	c) Gleye	343
1. Verwitterung und Mineralbildung	286	d) Auenböden	345
a) Kryoklastik	287	e) Marschen	347
b) Verbraunung und Verlehmung.	287	3. Unterwasserböden (Subhydrische Bö-	
c) Desilifizierung und Ferrallitisie-		den)	350
rung		4. Moore	351
d) Temperatur- und Salzsprengung	289	5. Anthropogene Böden	354
 Bildung von Humusformen a) Terrestrische Humusformen 		VI. Böden warmer und/oder kontinentaler	
(1) Rohhumus		Klimate	355
(2) Moder	290	1 Verticale	356

			Inhalt	ΧI
2. Latosole .		357	D. Bodenverbreitung	367
3. Plastosole .		358	 Grundsätze der Bodenvergesellschaf- 	
4. Terra rossa		359	tung	367
5. Steppen- und	Halbwüstenböden	359	2. Bodenregionen Mitteleuropas	371
6. Wüstenböden.		361	3. Bodenzonen der Erde	372
	kaliböden			
	S		E. Bodenbewertung	373
			1. Allgemeines	373
			2. Bewertung für forstliche Nutzung .	375
8. Andosole	· · · · · · · · ·	364	3. Bewertung für landwirtschaftliche	
9. Reisböden		364	Nutzung	
VII. Böden kalter Kli	magebiete	365	Anhang 1 Gliederung der geologischen For-	
1. Böden der Tu	ndren und der alpinen		mationen	370
	d Polsterrasen	365	manonen	3/7
2. Böden der Kä	ltewüsten	366	Anhang 2 Abkürzungen	382