Contents

CONTENTS

Contents	ı
Abstract	IV
Zusammenfassung	V
Publications	
Abbreviations and gene names	VII
-	
1 Introduction	1
1.1 Plant life cycle and seed formation	1
1.2 Endosperm development	2
1.2.1 Syncytial phase	2
1.2.2 Cellular phase	2
1.2.3 Maturation phase	4
1.3 Genetic studies of endosperm development and seed growth	4
1.4 Cell cycle regulators during endosperm development	5
1.5 Cell cycle control in plants	6
1.5.1 Cyclin-Dependent Kinases	8
1.5.2 Regulation of CDK-cyclin activity	9
1.5.3 Cyclins	10
1.5.3.1 Cyclin domains	12
1.6 Cyclins in Arabidopsis	
1.6.1 B type cyclins	13
1.7 CYCB1 gene family in Arabidopsis	15
2 Aim of the study	
3 Results	40
	Vision
3.2 Isolation of CyclinB1 mutants	

Contents

3.3	Ana	alysis of CYCB1 mutants	. 25
3	3.3.1	CYCB1 T-DNA mutants are null allele	25
3	3.2	CYCB1 single mutants show altered endosperm nuclei proliferation	26
3	3.3.3	Certain double mutant combinations of CYCB1s cause seed abortion	27
3	3.3.4	Endosperm nuclei proliferation defect in CYCB1 double mutants	30
3	3.3.5	cycb1;2-/- shows maternal effect in endosperm proliferation	33
3	3.6	The cycb1;1-/-cycb1;2-/- and cycb1;2-/-cycb1;3-/- plants show sporophyte	
		defects	34
3	.3.7	Growth rate defect in primary roots of cycb1;1-/-cycb1;2-/	37
3	2.3.8	cycb1;1-/-cycb1;2-/- roots show mitotic defects	38
3	.3.9	Mitotic defects in cycb1;1-/-cycb1;2-/- endosperm	38
3	.3.10	Ploidy analysis reveals the accumulation of cells in G2 phase	40
3	.3.11	Marker lines confirm mitotic arrest of cells in G2-M in double mutants	42
3	.3.12	Stomata development remains unaltered in cycb1;1-/- cycb1;2-/	.43
3.4	The	seed abortion phenotype of cycb1;1 and cycb1;2 double mutants is	
	sigr	nificantly enhanced by additional loss of CYCB1;3	. 43
3.5	Ana	lysis of quadruple mutants of CYCB1;1, CYCB1;2, CYCB1;3 and CYCB1;4	.45
3.6	EDI	E1, a possible substrate for CYCB1/CDK complex?	.45
3.7	QTI	analysis of seed weight using three sets of RIL populations	.47
3.8	QTI	analysis of autonomous endosperm development upon pollination with	
	cdk	a;1 pollen	.48
4	Discu	ssion	.51
4.1	B1-	type cyclins accumulate in G2/M and localise to chromatin and spindle durin	ıg
	mit	OSis	.51
4.2	cycl	b1;2-/- represents a maternal effect mutant	.53
4.3		B1s are required for nuclear division of endosperm and seed development in	
		bidopsis	
4.4		bryo development in spite of compromised endosperm proliferation in cycbi	
		cb1;2-/- and cycb1;2-/-cycb1;3-/- seeds	
4	.4.1 T	he endosperm fail to cellularise in cycb1;1-/-cycb1;2-/- and cycb1;2-/-cycb1;3-	/-
		eds	.56
4		he cycb1;1-/-cycb1;2-/- and cycb1;2-/-cycb1;3-/- show sporophyte growth	
		efects	
4	4.3	The cych1:1-/-cycb1:2-/- and cycb1:2-/-cycb1:3-/- show G2/M arrest	.57

Contents

	The mitotic defects in cycb1;1-/-cycb1;2-/- roots	
4.4.5	The mitotic defects in cycb1;1-/-cycb1;2-/- endosperm	
4.4.6	The triple mutants of CYCB1;1, CYCB1;2 and CYCB1;3 indicate gametophyt	ic
	defect	
4.5 Th	e quadruple mutants of CYCB1;1, CYCB1;2, CYCB1;3 and CYCB1;4 cause	
ga	metophytic defect	
4.6 Id	entification of potential substrates for CYCB1/CDK complex?	
4.7 Id	entification of QTL loci regulating seed mass	
4.8 Ide	entification of one locus controlling the autonomous endosperm division up	on
ро	llination with cdka;1 pollen	
5 Mat	erials & Methods	
	iterials	
5.1.1	Chemicals and antibiotics	
5.1.2	Enzymes, primers and kits	
5.1.3	Plant material	
5.2 Me	ethods	
5.2.1	Plant growth conditions	
5.2.2	Genomic DNA preparation from plant tissue	
5.2.3	Identification of mutant alleles by PCR	
5.2.4	Quantitative PCR	
<i>5.2.5</i>	Crossing of plants	
<i>5.2.6</i>	Whole-Mount preparation of seeds	
5.2.7	Stomata staining	
5.2.8	Flow cytometry for ploidy analysis	
<i>5.2.9</i>	Feulgen staining	
F 0 4 4	Immunostaining	•••••
5.2.10	QTL mapping	