Contents

Introduction

_	Bria	n P. Ca	hill	•
	1.1		Segmented Flow: A Challenging and Very sing Strategy of Microfluidics	1
		1101111	sing strategy of Microfidiales.	•
Pa	art I		ation, Manipulation and Characterization ro Fluid Segments	
2		-	crofluidics in Two-Dimensional Channels	7
		rles N.		
	2.1	_	ets in Linear Channels and on Two-Dimensional	
			es	7
	2.2		ating Droplet Arrays in Microchannels	9
	2.3		Surface Energy Gradients for Droplet Manipulation	11
	2.4	Rails	and Anchors	12
		2.4.1	Principle of Droplet Anchors	12
		2.4.2	The Anchor Strength	14
		2.4.3	Parking Versus Buffering Modes	16
		2.4.4	Forces Due to External Fields	17
	2.5	Makin	g and Manipulating Two-Dimensional Arrays	18
	2.6	Active	Manipulation in Two-Dimensional Geometries	19
		2.6.1	Actuation by Laser Beams	19
		2.6.2	Removing a Drop From an Anchor	19
		2.6.3	Selectively Filling an Array	21
		2.6.4	Initiating a Chemical Reaction on Demand	
			by Laser-Controlled Droplet Fusion	21
	2.7	Using	Surface Energy Gradients Without a Mean Flow	23
	2.8	Summ	nary and Conclusions on Droplet Manipulation	
			rface Forces	26
	Refe	-		27

viii Contents

3	Matthias Budden, Steffen Schneider, J. Michael Köhler						
		and Brian P. Cahill					
	3.1		luction on Electrical Switching of Droplets	32			
	3.2		ets and Segments	33			
	J.2	3.2.1	Droplets	33			
		3.2.2	Micro Fluid Segments and Their Manipulation				
		3.2.2	Without Electrical Actuation	35			
	3.3	Electr	ostatic Manipulation of Droplets in a Liquid Carrier	36			
	5.5	3.3.1	Droplet Charging	36			
		3.3.2	Actuation of Droplets by Static Electrical Fields	38			
		3.3.3	Droplet Sorting by Electrostatic Electrical				
			Manipulation	39			
	3.4	Dielec	ctric Manipulation of Droplets by Alternating Fields				
			iquid Carrier	40			
		3.4.1	Trapping of Droplets in Field Cages	40			
		3.4.2	Dielectric Actuation of Droplets by Dielectrophoresis	41			
	3.5	Manip	oulation of Fluid Segments by Potential Switching	42			
	3.6	Appli	cations and Challenges for Electrical Switching				
		of Dre	oplets and Segments	48			
	Refe	erences		52			
4	Chip-Integrated Solutions for Manipulation and Sorting						
			Proplets and Fluid Segments by Electrical Actuation	55			
			ch and Martin Hoffmann				
	4.1		s for Chip Integration of Droplet Actuators	55			
		4.1.1	Continuous Flow Analysis (CFA)	55			
		4.1.2	Digital Microfluidics (DMF)	56			
		4.1.3	Labs on a Chip (LoC) and Micro Total Analysis				
			Systems (µTAS)	57			
		4.1.4	Combining CFA Systems with DMF Concepts	58			
	4.2		ling and Simulation for Electrostatic Actuation				
			egrated Devices	60			
		4.2.1	General Aspects of Modeling				
			of Electrostatic Actuation	60			
		4.2.2	Modeling of Electrostatic Actuators	60			
		4.2.3	Electrostatic Forces in Relation to Flow Forces	63			
	4.3		nology Considerations and Fabrication of Chip Devices				
			ectrostatic Actuation	65			
		4.3.1	Materials and Basic Concept	65			
	1.1	4.3.2	Technology Concept and Manufacturing	65			
	4.4	_	rimental Realization of Chip-Integrated Electrostatic	66			
		Actua	itors	U			

Contents

	4.5	and A	narizing Conclusions on Modeling, Realization pplication Potential of Chip-Integrated Electrostatic				
		Actua	tion of Micro Fluid Segments	69			
	Refe	rences		71			
5	Electrical Sensing in Segmented Flow Microfluidics						
			hill, Joerg Schemberg, Thomas Nacke				
	and		Gastrock				
	5.1		uction in to Electrical Sensing of Droplets				
			licro Fluid Segments	73			
	5.2		citive Sensing of Droplets	74			
		5.2.1	Principle of Capacitive Sensing	74			
		5.2.2	Experimental Example of Capacitive Measurements				
			in Microfluid Segments Embedded in a Perfluorinated	7.0			
			Carrier Liquid	76			
	5.3		limetric Measurement of Conductivity	70			
		-	gmented Flow	79			
		5.3.1	Impedimetric Measurement Principle	79			
		5.3.2	Finite Element Model of Non-Contact Impedance	90			
		5 2 2	Measurement	80			
		5.3.3	Measurement	86			
	5.4	Evnor	imental Investigation of an Inline Noncontact	60			
	3.4		lance Measurement Sensor	87			
		5.4.1	Impedance Measurement of Ionic Strength	87			
		5.4.2	Measurement of Droplets	91			
	5.5		wave Sensing in Micro Fluidic Segmented Flow	91			
	5.5	5.5.1	Principle of Microwave Sensing in Microfluidics	91			
		5.5.2	Example of Experimental Realization if Microwave				
		5.5. 2	Sensing in Microsegmented Flow	95			
	5.6	Summ	narizing Conclusions for Electrical Characterization	,,			
	2.0		crosegmented Flow	97			
	Refe			98			
Pa	rt II		nical Application in Micro Continuous-Flow nesis of Nanoparticles				
		Synth	iesis of Nanoparticles				
6			cle Handling in Microreaction Technology:				
		Practical Challenges and Application of Microfluid Segments					
			e-Based Processes	103			
			heiff and David William Agar	100			
	6.1		cation of Solids in Microfluidics	103			
	6.2	Partic	le Transport Behavior in Micro Segmented Flow	105			

x Contents

			ng of Particles and Suspensions	117
			crosegmented Flow	116 123
	6.4	CC C		
	6.5		stream Phase Separation	127
		6.5.1	General Aspects of Separation in Micro	
			Segmented Flow	127
		6.5.2	Micro Settlers	129
		6.5.3	Micro-Hydrocyclones and Curved Branches	129
		6.5.4	Wettability and Capillarity Separators: Membranes,	
			Pore Combs, Branches	130
	6.6	ogeneously Catalyzed Reactions in Microfluidic		
		Proces	sses	133
		6.6.1	Application of Suspension Slug Flow	
			for Heterogeneously Catalyzed Reactions	133
		6.6.2	Micro-Packed Bed	137
		6.6.3	Suspension Slug Flow Microreactor	138
		6.6.4	Wall-Coated Microreactor	139
		6.6.5	Membrane/Mesh Microreactor	140
	6.7	Concl	usion on Particle Handling and Synthesis	
		in Mic	cro Segmented Flow	141
	Refe	erences		141
7	Mic	ro Con	tinuous-Flow Synthesis of Metal Nanoparticles	
7			tinuous-Flow Synthesis of Metal Nanoparticles to Fluid Segment Technology	149
7	Usin	g Micr		149
7	Usin	ng Micr rea Kna Introd	o Fluid Segment Technology	149
7	Usin And	ng Micr rea Kna Introd	o Fluid Segment Technology	149 150
7	Usin And	ng Micr rea Kna Introd by Mi	To Fluid Segment Technology	
7	Usin And 7.1	ng Micr rea Kna Introd by Mi Requir	o Fluid Segment Technology	
7	Usin And 7.1	ng Micr rea Kna Introd by Mi Requinand th	ro Fluid Segment Technology nuer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles le Specific Advantages of Micro Fluid	
7	Usin And 7.1	ng Micr rea Kna Introd by Mi Requir and th Segme	ro Fluid Segment Technology nuer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles the Specific Advantages of Micro Fluid ent Technique Therefore	150
7	Usin And 7.1 7.2	ng Micr rea Kna Introd by Mi Requir and th Segme Gener	ro Fluid Segment Technology nuer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles le Specific Advantages of Micro Fluid	150
7	Usin And 7.1 7.2	ng Micr rea Kna Introd by Mi Requir and th Segme Gener Proces	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles the Specific Advantages of Micro Fluid ent Technique Therefore al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis	150
7	Usin And 7.1 7.2 7.3	ng Micr rea Kna Introd by Mi Requir and th Segme Gener Proces Addre	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles re Specific Advantages of Micro Fluid ent Technique Therefore. al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented	150
7	Usin And 7.1 7.2 7.3 7.4	ng Micr rea Kna Introd by Mi Requir and th Segme Gener Proces Addre Flow-	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles re Specific Advantages of Micro Fluid ent Technique Therefore. al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis	150 152 153
7	Usin And 7.1 7.2 7.3	ng Micr rea Kna Introd by Mi Requir and th Segme Gener Proces Addre Flow- Micro	ro Fluid Segment Technology There and J. Michael Köhler The word of the Synthesis of Fluid Segment Technique Therefore of the Synthesis of Metal Nanoparticles The Specific Advantages of Micro Fluid The therefore of Noble Metal Nanoparticle Synthesis The sess of Noble Metal Nanoparticle Synthesis Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed	150 152 153
7	Usin And 7.1 7.2 7.3 7.4 7.5	ng Micro rea Kna Introd by Mi Requir and th Segme Gener Proces Addre Flow- Micro Metal	ro Fluid Segment Technology There and J. Michael Köhler The word of the Synthesis of Fluid Segment Technique Therefore of Micro Fluid Technique Therefore of Noble Metal Nanoparticle Synthesis The Specific Advantages of Micro Fluid The technique Therefore of Noble Metal Nanoparticle Synthesis The session of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles of Composed	150 152 153
7	Usin And 7.1 7.2 7.3 7.4	ng Micr rea Kna Introd by Mi Requin and the Segme Gener Proces Addre Flow- Micro Metal Auton	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles re Specific Advantages of Micro Fluid ent Technique Therefore al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles mated Synthesis Experiments in Large Parameter	150 152 153
7	Usin And 7.1 7.2 7.3 7.4 7.5	ng Microrea Kna Introd by Mi Requin and th Segme Gener Proces Addre Flow- Micro Metal Auton Space	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles re Specific Advantages of Micro Fluid ent Technique Therefore al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles nated Synthesis Experiments in Large Parameter s for a Variation of the Plasmonic Properties	150 152 153
7	Usin And 7.1 7.2 7.3 7.4 7.5	ng Micr rea Kna Introd by Mi Requir and th Segme Gener Proces Addre Flow- Micro Metal Auton Space of Nai	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles re Specific Advantages of Micro Fluid ent Technique Therefore. al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles nated Synthesis Experiments in Large Parameter is for a Variation of the Plasmonic Properties noparticles by Varied Reactant Composition in Fluid	150 152 153 156
7	Usin And 7.1 7.2 7.3 7.4 7.5	ng Micro rea Kna Introd by Mi Requii and th Segme Gener Proces Addre Flow- Micro Metal Auton Space of Nat Segme	ro Fluid Segment Technology auer and J. Michael Köhler auction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles respecific Advantages of Micro Fluid ent Technique Therefore. al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles nated Synthesis Experiments in Large Parameter is for a Variation of the Plasmonic Properties noparticles by Varied Reactant Composition in Fluid ent Sequences	150 152 153
7	Usin And 7.1 7.2 7.3 7.4 7.5 7.6	ng Microrea Kna Introd by Mi Require and th Segme Gener Proces Addre Flow- Micro Metal Auton Space of Nat Segme Concl	ro Fluid Segment Technology auer and J. Michael Köhler uction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles respecific Advantages of Micro Fluid ent Technique Therefore. al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles nated Synthesis Experiments in Large Parameter is for a Variation of the Plasmonic Properties noparticles by Varied Reactant Composition in Fluid ent Sequences usion and Outlook on Metal Nanoparticle	150 152 153 156
7	Usin And 7.1 7.2 7.3 7.4 7.5 7.6	ng Microrea Kna Introd by Mi Require and th Segme Gener Proces Addre Flow- Micro Metal Auton Space of Nat Segme Concl Forma	ro Fluid Segment Technology auer and J. Michael Köhler auction in Metal Nanoparticle Synthesis cro Fluid Segment Technique rements of the Synthesis of Metal Nanoparticles respecific Advantages of Micro Fluid ent Technique Therefore. al Aspects of Particle Formation and Partial sses of Noble Metal Nanoparticle Synthesis ssing of Size and Shape in a Micro Segmented Through Metal Nanoparticle Synthesis Segmented Flow Synthesis of Composed Nanoparticles nated Synthesis Experiments in Large Parameter is for a Variation of the Plasmonic Properties noparticles by Varied Reactant Composition in Fluid ent Sequences	150 152 153 156 170

Contents

Part III	Biological Application: Cell-Free Biotechnology,
	Cell Cultivation and Screening Systems

8	Characterization of Combinatorial Effects of Toxic Substances						
	by Cell Cultivation in Micro Segmented Flow						
	J. C	ao, D. Kürsten, A. Funfak, S. Schneider and J. M. Köhler					
	8.1	Introduction: Miniaturized Techniques for Biomedical,					
		Pharmaceutical, Food and Environmental Toxicology	204				
	8.2	Advantages of Micro Segmented Flow for Miniaturized					
		Cellular Screenings	205				
	8.3	Miniaturized Determination of Highly Resolved					
		Dose/Response Functions	208				
	8.4	Strategy and Set-Up for Generation of 2D-					
		and 3D-Concentration Programs	212				
	8.5	Determination of Combinatorial Effects by Characterization					
		of Dose/Response Functions in Two-Dimensional					
		Concentration Spaces	217				
	8.6	Multi-Endpoint Detection under Microfluidic Conditions	218				
	8.7	Interferences Between Food Components, Nanoparticles					
		and Antibiotics	221				
	8.8	Application of Micro Fluid Segments for Studying					
		Toxic Effects on Multicellular Organisms.	224				
	8.9	Potential of the Segmented Flow Technique for Toxicology					
		and Further Challenges	225				
	Refe	erences	228				
9	Scre	Screening for Antibiotic Activity by Miniaturized Cultivation					
	in N	Iicro-Segmented Flow	231				
	Eme	rson Zang, Miguel Tovar, Karin Martin and Martin Roth					
	9.1	Introduction: Antibiotics and Antimicrobial Resistance	231				
	9.2	Current State of Screening for New Antimicrobial Products	232				
	9.3	Microbial Assays in Droplet-Based Microfluidic Systems					
		and in Micro-Segmented Flow	233				
		9.3.1 General Considerations for Microbial Assays					
		in Droplet-Based Systems	233				
		9.3.2 Culture Media for Droplet-Based Screening	234				
		9.3.3 Detection Mechanisms for Droplet-Based Screening	237				
		9.3.4 Reporter Organisms for Droplet-Based Screening	241				
		9.3.5 Aspects of Co-cultivation of Different					
		Microbial Species	241				

xii Contents

9.4	Detection of Antibiotic Activity in Droplets and Screening			
	for No	ovel Antibiotics	242	
	9.4.1	Possibilities and Constraints of Antibiotic Screening		
		in Droplets	242	
	9.4.2	Screening for Novel Antibiotics		
		in Micro-Segmented Flow	243	
	9.4.3	Improving Robustness of Screening		
		in Micro-Segmented Flow	246	
9.5	Emuls	sion-Based Microfluidic Screenings: An Overview	248	
	9.5.1	Droplet Generation and Handling for Highly		
		Parallelized Operations	248	
	9.5.2	Screening for Novel Antibiotics with an Emulsion-		
		Based Microfludic Approach	252	
9.6				
	in Mic	cro-Segmented Flow and Emulsion-Based Systems	259	
Refe	erences		261	
ndev			267	