Contents

1	Preli	minaries: Sets, Relations, and Functions	1
	1.1	Introduction	1
	1.2	Membership, Subsets, and Naive Axioms	2
	1.3	The Power Set and Set Operations	6
	1.4	Ordered Pairs and Relations	8
	1.5	Functions	10
	1.6	Families and Partitions	13
	1.7	Finite and Infinite Sequences and Strings	16
	1.8	Partitions and Equivalence Relations	19
	1.9	Orders (Linear Orders)	21
Par	tI D	Pedekind: Numbers	
2	The l	Dedekind-Peano Axioms	29
	2.1	Introduction	29
	2.2	The Dedekind–Peano Axioms	30
	2.3	Addition, Order, and Multiplication	31
	2.4	Fractions and Ratios	34
	2.5	Order, Addition, and Multiplication of Fractions and Ratios	35
	2.6	Properties of Addition and Multiplication of Ratios	37
	2.7	Integral Ratios and the Embedding of the Natural Numbers	37
	2.8	The Archimedean and Fineness Properties	39
	2.9	Irrationality of $\sqrt{2}$ and Density of Square Ratios	40
	2.10	Recursive Definitions*	42
3	Dedekind's Theory of the Continuum		
	3.1	Introduction	47
	3.2	Linear Continuum in Geometry	47
	3.3	Problems with the Ratios	48
	3.4	Irrationals: Dedekind's Definition of the Continuum	51
	3.5	Lengths (Magnitudes)	54

		The Ordered Field R of Real Numbers	58
	3.6	Additional Facts on Ordered Fields*	62
	3.7	Additional Facts on Ordered Fields Alternative Development Routes*	63
	3.8 3.9	Complex Numbers*	64
4		cript I: What Exactly Are the Natural Numbers?	67
4	4.1	Describe Absolution?	67
	4.2	Interpretations for the Natural Numbers	69
	4.3	Dedekind's Structuralism	70
Pa	rt II (Cantor: Cardinals, Order, and Ordinals	
5	Card	linals: Finite, Countable, and Uncountable	77
-	5.1	Cardinal Numbers	77
	5.2	Sum and Product of Cardinal Numbers	81
	5.3	Finite Sets and Dedekind Infinite Sets	82
	5.4	Natural Numbers and Reflexive Cardinals	87
	5.5	The Axiom of Choice vs Effectiveness	90
	5.6	\aleph_0 and Countable Sets	94
	5.7	The Countable and Dependent Axioms of Choice	99
	5.8	$\aleph_0 < \mathfrak{c}$: The Cardinality of the Continuum	101
	5.9	CH: The Continuum Hypothesis	105
	5.10	More Countable Sets and Enumerations	106
6	Caro	linal Arithmetic and the Cantor Set	109
	6.1	The Cantor–Bernstein Theorem	109
	6.2	Arbitrary Sums and Products of Cardinals	111
	6.3	Cardinal Exponentiation: $ P(A) = 2^{ A }$	114
	6.4	Cardinal Arithmetic	115
	6.5	The Binary Tree	117
	6.6	The Cantor Set K	119
	6.7	The Identity $2^{\aleph_0} = \mathfrak{c}$	123
	6.8	Cantor's Theorem: The Diagonal Method	125
	6.9	The Cardinal $\mathfrak{f} = 2^{\mathfrak{c}}$ and Beyond	127
	6.10		128
7	Ord	ers and Order Types	131
	7.1	Orders, Terminology, and Notation	131
	7.2	Some Basic Definitions: Suborders	133
	7.3	Isomorphisms, Similarity, and Rearrangements	135
	7.4	Order Types and Operations	138
8	Den	se and Complete Orders	149
	8.1	Limit Points, Derivatives, and Density	149
	8.2	Continuums, Completeness, Sup, and Inf	154
	8.3	Embeddings and Continuity	156
	8.4	Cantor's Theorem on Countable Dense Orders	160

	8.5	$\aleph_0 < \mathfrak{c}$: Another Proof of Uncountability of \mathbf{R}	162
	8.6	The Order Type of R	163
	8.7	Dedekind Completion	166
	8.8	Properties of Complete Orders and Perfect Sets	168
	8.9	Connectedness and the Intermediate Value Theorem	173
9	Well	-Orders and Ordinals	175
	9.1	Well-Orders, Ordinals, Sum, and Product	175
	9.2	Limit Points and Transfinite Induction	179
	9.3	Well-Orders and Ordinals: Basic Facts	182
	9.4	Unique Representation by Initial Sets of Ordinals	184
	9.5	Successor, Supremum, and Limit	187
	9.6	Operations Defined by Transfinite Recursion	189
	9.7	Remainder Ordinals and Ordinal Exponentiation	191
	9.8	The Canonical Order on Pairs of Ordinals	195
	9.9	The Cantor Normal Form	197
10	Alep	hs, Cofinality, and the Axiom of Choice	199
	10.1	Countable Ordinals, ω_1 , and \aleph_1	199
	10.2	The Cardinal 💸 1	201
	10.3	Hartogs' Theorem, Initial Ordinals, and Alephs	203
	10.4	Abstract Derivatives and Ranks	206
	10.5	AC, Well-Ordering Theorem, Cardinal Comparability	208
	10.6	Cofinality: Regular and Inaccessible Cardinals	210
	10.7	The Continuum Hypothesis	216
11	Poset	s, Zorn's Lemma, Ranks, and Trees	221
	11.1	Partial Orders	221
	11.2	Zorn's Lemma	223
	11.3	Some Applications and Examples	225
	11.4	Well-Founded Relations and Rank Functions	229
	11.5	Trees	234
	11.6	König's Lemma and Well-Founded Trees	237
	11.7	Ramsey's Theorem	241
12	Posts	cript II: Infinitary Combinatorics	245
	12.1	Weakly Compact Cardinals	245
	12.2	Suslin's Problem, Martin's Axiom, and ♦	247
Par	t III	Real Point Sets	
12	.	I.C	255
13		val Trees and Generalized Cantor Sets	255
	13.1	Intervals, Sup, and Inf	255 257
	13.2	Interval Subdivision Trees	
	13.3	Infinite Branches Infough Irees	259
	13.4	Cantor Systems and Generalized Cantor Sets	263

14	Real	Sets and Functions	265
	14.1	Open Sets	265
	14.2	Limit Points, Isolated Points, and Derived Sets	266
	14.3	Closed, Dense-in-Itself, and Perfect Sets	268
	14.4	Dense, Discrete, and Nowhere Dense Sets	270
	14.5	Continuous Functions and Homeomorphisms	275
15	The I	Heine-Borel and Baire Category Theorems	281
	15.1	The Heine–Borel Theorem	281
	15.2	Sets of Lebesgue Measure Zero	285
	15.3	Lebesgue Measurable Sets	287
	15.4	F_{σ} and G_{δ} Sets	290
	15.5	The Baire Category Theorem	291
	15.6	The Continuum Hypothesis for G_{δ} Sets	293
	15.7	The Banach–Mazur Game and Baire Property	295
	15.8	Vitali and Bernstein Sets	297
16	Cant	or-Bendixson Analysis of Countable Closed Sets	301
	16.1	Homeomorphisms of Orders and Sets	301
	16.2	The Cantor–Bendixson Theorem and Perfect Sets	303
	16.3	Ordinal Analysis of Countable Closed Bounded Sets	305
	16.4	Cantor and Uniqueness of Trigonometric Series	310
17	Brou	wer's Theorem and Sierpinski's Theorem	313
	17.1	Brouwer's Theorem	313
	17.2	Homeomorphic Permutations of the Cantor Sct	315
	17.3	Sierpinski's Theorem	318
	17.4	Brouwer's and Sierpinski's Theorems in General Spaces	319
18	Bore	l and Analytic Sets	321
	18.1	Sigma-Algebras and Borel Sets	321
	18.2	Analytic Sets	324
	18.3	The Lusin Separation Theorem	331
	18.4	Measurability and Baire Property of Analytic Sets	333
	18.5	The Perfect Set Property for Analytic Sets	335
	18.6	A Non-Borel Analytic Set	338
19	Posts	script III: Measurability and Projective Sets	345
	19.1	The Measure Problem and Measurable Cardinals	345
	19.2	Projective Sets and Lusin's Problem	252
	19.3	Measurable Cardinals and PCA (Σ_2^1) Sets	354
Par	t IV	Paradoxes and Axioms	
20	Para	doves and Dosolations	
	20.1	doxes and Resolutions	361
	20.1	Some Set Theoretic Paradoxes	361
	20.2	Russell's Theory of Types	364
	20.5	Zermelo's Axiomatization	366

21	Zermelo-Fraenkel System and von Neumann Ordinals	369	
	21.1 The Formal Language of ZF	369	
	21.2 The First Six ZF Axioms	370	
	21.3 The Replacement Axiom	376	
	21.4 The von Neumann Ordinals	377	
	21.5 Finite Ordinals and the Axiom of Infinity	382	
	21.6 Cardinal Numbers and the Transfinite	385	
	21.7 Regular Sets and Ranks	390	
	21.8 Foundation and the Set Theoretic Universe <i>V</i>	393	
	21.9 Other Formalizations of Set Theory	395	
	21.10 Further Reading	398	
22	Postscript IV: Landmarks of Modern Set Theory	399	
	22.1 Gödel's Axiom of Constructibility	399	
	22.2 Cohen's Method of Forcing	402	
	22.3 Gödel's Program and New Axioms	404	
	22.4 Large Cardinal Axioms	405	
	22.5 Infinite Games and Determinacy	407	
	22.6 Projective Determinacy	409	
	22.7 Does the Continuum Hypothesis Have a Truth Value?	411	
	22.8 Further References	412	
Appendices			
A	Proofs of Uncountability of the Reals	413	
	A.1 Order-Theoretic Proofs	413	
	A.2 Proof Using Cantor's Diagonal Method	415	
	A.3 Proof Using Borel's Theorem on Interval Lengths	416	
В	Existence of Lebesgue Measure	419	
C	List of ZF Axioms	421	
Ref	erences	423	
List of Symbols and Notations			
Index			