Contents

Abbreviations	5
Summary	9
Zusammenfassung	11
1 Introduction	13
1.1 Initial response: MAMP-triggered immunity	13
1.2 Secondary response: Effector-triggered immunity	14
1.3 Global response: systemic acquired resistance	15
1.4 The EDS1/PAD4 regulatory node	16
1.5 Flavin-dependent mono-oxygenase 1	18
1.5.1 FMO1 in EDS1/PAD4 dependent defence	19
1.5.2 FMO1 in systemic acquired resistance	20
1.5.3 FMO1 and cell death	21
1.5.4 FMO1 function	22
1.6 Chemical biology and screening strategies	23
1.7 Aims of this thesis	25
2 Screening of natural and synthetic compound libraries uncovers several putative activa	itors 27
2.1 Screen for inhibitors	30
2.2 Screen for activators	31
2.2.1 Verification of activator chemicals	32
2.2.2 Confirmation of FMO1 induction in wild-type seedlings by qRT-PCR	34
2.3 Thaxtomin A is a potent FMO1 upregulator	37
2.3.1 Timeline and dose-dependence of thaxtomin A-induced FMO1	37
2.3.2 Thaxtomin A affects seedling growth, but not germination	39
2.3.3 Thaxtomin A does not trigger MAPK and ROS signalling	40
2.3.4 Analysis of perturbations in amino acid levels	42
2.3.5 Thaxtomin A leads to an increase in salicylic acid levels	44
2.3.6 Structure-activity relationship of thaxtomin A	44
2.3.7 Role of thaxtomin A in other signalling pathways	46
2.3.8 FMO1 expression due to thaxtomin A is dependent on EDS1 and PAD4	
2.3.9 Thaxtomin A is a PAD4 transcription activator	
2.4 Monensin sodium salt and merbromin increase FMO1 expression	
2.4.1 EC ₅₀ determination	53
2.4.2 Monensin sodium salt and merbromin affect germination and growth in a	54

2.4.3 Interaction between early defence signalling and FMO1 upregulation	56
2.4.4 Role of monensin sodium salt in other signalling pathways	50 50
2.4.5 Analysis of changes in amino acid concentration	
2.4.6 Effect of monensin sodium salt and merbromin on defence gene expression	
2.4.7 Monensin sodium salt, but not merbromin leads to an increase in salicylic acid	
2.4.8 Role of monensin sodium salt and merbromin in other signalling pathways	
3 Discussion	
3.1 Primary screening and hit selection	
3.2 Origin and activity of thaxtomin A: a potent FMO1 inducer	
3.2.1 Structure-activity relationship of thaxtomin A bioactivity	
3.2.2 Auxin inhibits thaxtomin A-induced FMO1	
3.2.3 FMO1 expression in plants: at death's door?	73
3.2.4 Positioning thaxtomin A activity within the signalling network	74
3.3 Merbromin and monensin sodium salt induce FMO1 expression	76
3.4 Concluding Remarks	80
5 Materials & methods	83
5.1 Materials	83
5.1.1 Plant materials	83
5.1.2 Chemicals	84
5.1.3 Media	84
5.1.4 Buffers and solutions	84
5.2 Methods	85
5.2.1 Maintenance and cultivation of Arabidopsis plants	85
5.2.2 Chemical treatment of Arabidopsis plants	85
5.2.3 Confocal laser scanning microscopy (CLSM)	85
5.2.4 Biochemical methods	86
5.2.5 Molecular biological methods	87
5.2.6 Reporter assays	90
5.2.7 Chemical screen	
5.2.8 Monitoring the oxidative burst	
5.2.9 Probe synthesis	
References	
Acknowledgements	
Erklärung	
Supplementary data	107