Differential Quadrature and Its Application in Engineering

Table of Contents

1	Mathematical Fundamentals of Differential Quadrature Method: Linear Vector Space Analysis and Function Approximation							
	1.1			action				
	1.2 Derivative Approximation by Differential							
		Quadrature (DQ) Method						
		1.2.1		ral Quadrature	3			
		1.2.2	_	rential Quadrature	5			
	1.3			A Linear Vector Space	6			
		1.3.1	•	ition of A Linear Vector Space	6			
		1.3.2		rties of A Linear Vector Space	8			
	1.4	Solut	-	artial Differential Equations (PDEs) and				
				proximation	11			
		1.4.1		Basic Types of Solution for PDEs	11			
		1.4.2		Order Polynomial Approximation	13			
		1.4.3	_	er Series Expansion	18			
		1.	4.3.1	General Function	18			
		1.	4.3.2	Even Function	21			
		1.4	4.3.3	Odd Function	23			
2	Pol	ynomia	l-based	Differential Quadrature (PDQ)	25			
	2.1	Intro	duction.		25			
	2.2	Computation of Weighting Coefficients						
		for th	ie First (Order Derivative	26			
		2.2.1	Bellm	an's Approaches	26			
		2.2.2	Quan	and Chang's Approach	28			
		2.2.3	Shu's	General Approach	29			
	2.3	Com	putation	of Weighting Coefficients for the Second and				
		High	er Order	Derivatives	32			
		2.3.1	Weigl	hting Coefficients of the Second Order Derivative	32			
		2.3.2	Shu's	Recurrence Formulation				
			for Hi	gher Order Derivatives	34			
		2.3.3	Matrix	Multiplication Approach	36			
	2.4	Error	Analysi	is	38			
		2.4.1	The F	unction Approximation	38			
		2.4.2	The D	Perivative Approximation	40			

	2.5	Relati	onship Between PDQ and Other Approaches	44
		2.5.1	Relationship Between PDQ and Finite Difference Scheme	44
		2.5	Generation of Finite Difference Scheme	44
		2.5	Relationship Between PDQ and Highest Order Finite	
			Difference Scheme	48
		2.5.2	Relationship Between PDQ and Chebyshev	
			Collocation Method	52
	2.6		sion to the Multi-dimensional Case	55
		2.6.1	Direct Extension for Regular Domain	55
		2.6.2	Differential Cubature Method	60
	2.7	Specia	fic Results for Typical Grid Point Distributions	62
		2.7.1	Uniform Grid	62
		2.7.2	Chebyshev-Gauss-Lobatto Grid	63
		2.7.3	Coordinates of Grid Points Chosen as the Roots of Chebyshev	
	• •	~	Polynomial	64
	2.8	Gener	ration of Low Order Finite Difference Schemes by PDQ	65
,	E	E		69
3			pansion-based Differential Quadrature (FDQ)	
	3.1		luction	69
	3.2		e Expansion-based Differential Quadrature (CDQ)	70
	2.2		ven Functions	70
	3.3		Expansion-based Differential Quadrature (SDQ)	0.1
	2.4		dd Functions	81
	3.4		er Expansion-based Differential Quadrature (FDQ)	06
	2.5		ny General Function	86
	3.5		Properties of Fourier Expansion-based	0.1
		Differ	rential Quadrature	91
4	Car	na Duan	outing of DO Weighting Coefficient Metuices	95
4		_	erties of DQ Weighting Coefficient Matrices	95
	4.1			
	4.2		minant and Rank of DQ Weighting Coefficient Matrices	96
		4.2.1	Definition and Properties of Determinant and Rank	96
		4.2.2	Determinant and Rank of DQ Weighting	00
	4.2	C	Coefficient Matrices	98
	4.3			100
		4.3.1	Definition of Centrosymmetric and Skew Centrosymmetric Matrices	101
		4.3.2	Properties of Centrosymmetric and Skew Centrosymmetric	101
		7.3.2	· · · · · · · · · · · · · · · · · · ·	102
		4.3		102

		4.3	.2.2	Properties of Skew Centrosymmetric Matrices	105
		4.3.3	Struc	ctures of DQ Weighting Coefficient Matrices	107
		4.3	.3.1	Structure of First Order DQ Weighting	
				Coefficient Matrix	107
		4.3	.3.2	Structures of Higher Order DQ Weighting Coefficient Matrices	109
	4.4	Effect	of Gr	id Point Distribution on Eigenvalues of DQ Discretization	1
		Matri			110
		4.4.1	Stab	lity of Ordinary Differential Equations	111
		4.4.2	Eige	nvalues of Some Specific DQ Discretization Matrices	112
		4.4	.2.1	The Convection Operator	112
		4.4	.2.2	The Diffusion Operator	117
		4.4	.2.3	The Convection-Diffusion Operator	119
	4.5	Effect	of Gr	id Point Distribution on Magnitude of DQ Weighting	
		Coeff	icients		120
5	Sol	ution Te	chniq	ues for DQ Resultant Equations	123
	5.1	Introd	luction		123
	5.2	Soluti	on Te	chniques for DQ Ordinary Differential Equations	124
	5.3	Soluti	on Te	chniques for DQ Algebraic Equations	128
		5.3.1	Dire	et Methods	130
		5.3.2	Itera	tive Methods	134
		5.3	.2.1	Iterative Methods for Conventional System	134
		5.3	.2.2	Iterative Methods for Lyapunov System	137
	5.4	Imple	menta	tion of Boundary Conditions	140
	5.5	Samp	le App	lications of DQ Method	143
		5.5.1	Burg	ers Equation	143
		5.5.2	Two	-dimensional Poisson Equation	145
		5.5.3	Heln	aholtz Eigenvalue Problem	148
6	Ap	plication	of Di	fferential Quadrature Method to Solve Incompressible	e
	Nav	vier-Stol	kes Eq	uations	153
	6.1	Introd	luction		153
	6.2	Gover	ning E	Equations	154
		6.2.1	Dime	ensional Form	154
		6.2.2	Non-	dimensional Form	157
		6.2.3	Vort	icity-Stream Function Formulation	159
	6.3	Soluti	on of	Vorticity-Stream Function Formulation	160
		6.3.1	Disc	retization of Governing Equations	160
		6.3.2	Impl	ementation of Boundary Conditions	161

	6.3		3.2.1	Implementation of Boundary Condition	
				for Vorticity	162
		6.3	3.2.2	Implementation of Boundary Condition	
				for Stream Function	162
		6.3	3.2.3	Implementation of Boundary Condition	
				for Temperature	167
		6.3.3	Solut	ion Procedures	168
		6.3.4	Some	Numerical Examples	170
		6.3	3.4.1	The Flow Past A Circular Cylinder	170
		6.3	3.4.2	The Natural Convection in A Concentric Annulus	172
	6.4	Soluti	ion of I	ncompressible Navier-Stokes Equations	
		in Pri	mitive '	Variable Form	175
		6.4.1	Introd	luction	175
		6.4.2	Press	ure Correction Method	176
		6.4.3		Approaches to Specify Boundary Condition for p' and to	
				ce Continuity Condition on the Boundary	178
			.3.1	Approach 1	
			.3.2	Approach 2	180
		6.4.4	_	outational Sequence	181
		6.4.5	•	le Application and Comments on the Two Approaches	182
		6.4.5.1		Importance of Enforcing Continuity Condition on the Boundary	182
		6.4	1.5.2	Comments on Performance of Two Approaches	184
7	Ap	plicatior	ı of Dif	ferential Quadrature Method to Structural and	
				s	186
	7.1	Introd	luction		186
	7.2	Differ	rential (Quadrature Analysis of Beams	188
		7.2.1	Gove	rning Equations and Boundary Conditions	188
		7.2.2	Nume	erical Discretization	189
		7.2.3	Imple	ementation of Boundary Conditions	190
		7.2	2.3.1	The δ -technique	190
		7.2	2.3.2	Modification of Weighting Coefficient Matrices	191
		7.2	2.3.3	Direct Substitution of Boundary Conditions into	
				Discrete Governing Equations	194
		7.2.4	Nume	erical Example: Free Vibration Analysis of	
			A Uni	iform Beam	196
	7.3	Differ	rential (Quadrature Analysis of Thin Plates	197
		7.3.1	Gove	rning Equations and Boundary Conditions	197
		7.3.2	Nume	erical Discretization	199

		7.3.3	Impl	ementation of Boundary Conditions	200		
		7.3	3.3.1	The δ-technique	200		
		7.3	3.3.2	Modification of Weighting Coefficient Matrices	201		
		7.3	3.3.3	Direct Substitution of Boundary Conditions into			
				Discrete Governing Equations	202		
		7.3	3.3.4	General Approach	205		
		7.3.4	Num	nerical Example: Free Vibration Analysis of			
			Squa	re Plates	207		
	7.4	Diffe	rential	Quadrature Analysis of Shells	209		
		7.4.1	Gov	erning Equations and Boundary Conditions	209		
		7.4.2	Num	nerical Discretization	218		
		7.4.3	Impl	lementation of Boundary Conditions	219		
		7.4.4	Num	nerical Example: Free Vibration Analysis of A Composite			
			Lam	inated Conical Shell	222		
8	Mis	scellane	ous Aj	pplications of Differential Quadrature Method	224		
	8.1	Intro	duction	1	224		
	8.2			to Heat Transfer			
	8.3			to Chemical Reactor			
	8.4			to Lubrication Problems			
	8.5	5 Application to Waveguide Analysis					
	8.6			the Helmholtz Equation			
	8.7	Effec	t of M	esh Point Distribution on Accuracy of DQ Results	242		
9	Apı	olicatio	n of Di	ifferential Quadrature to Complex Problems	245		
	9.1	-		1			
	9.2	Mult	i-doma	in DQ Method			
		9.2.1		ology of Interface			
		9.	2.1.1	Patched Interface			
		9.3	2.1.2	Overlapped Interface	248		
		9.2.2	Mul	ti-domain DQ Application in Fluid Mechanics			
		9.2.3		ti-domain DQ Application in Solid Mechanics			
		9.2.4		ti-domain DQ Application in Waveguide Analysis			
	9.3			ation in Curvilinear Coordinate System			
		9.3.1		rdinate Transformation			
		9.3.2		Simulation of Incompressible Flows			
			_	regular Domains	256		
		9.3.3		Vibration Analysis of Irregular Plates			
			3.3.1	Partial Transformation			

		9.3	.3.2	Complete Transformation	261		
		9.3	.3.3	Implementation of Boundary Conditions	262		
		9.3	.3.4	Sample Application	264		
	9.4	Differ	ential (Cubature Method for Complex Problems	266		
			_	ral Quadrature (GIQ) And Its Application to Solve			
			-	Equations			
	10.1	Introd	uction.		267		
	10.2	Gener	alized l	Integral Quadrature (GIQ)	268		
		10.2.1	One-c	limensional Generalized Integral Quadrature	268		
		10.2.2	Error	Analysis	271		
		10.2.3	Exten	sion to Multi-dimensional Cases	272		
		10.2.4	Samp	le Application of GIQ Method	273		
	10.3	DQ-G	IQ Alg	orithm to Solve Boundary Layer Equations	275		
		10.3.1	Stream	m Function as Dependent Variable	275		
		10.3.2	Primi	tive Variables as Dependent Variables	277		
	10.4	Steady	Bound	dary Layer Solutions	279		
		10.4.1	One-c	limensional Case	279		
		10.4.2	Two-	dimensional Case	280		
		10.4.3	Three	-dimensional Case	281		
	10.5	Unstea	ady Bo	undary Layer Solutions	285		
App	endi	ces					
	A.	A Fortran Program for Simulation of Natural Convection					
		in A S	quare (Cavity	288		
	В.	A Fort	ran Pro	ogram for Vibration Analysis of Rectangular Plates	305		
	C.	A Fortran Program for L-Shaped Waveguide Analysis					
		by Mu	ılti-don	nain DQ Method	315		
D 6							
Kefe	reno	ces	•••••		324		
Inda	v				336		
11146	530						