Contents

Pre	јасе 1	o ine Secona Lainon	page xv
Pre	face t	to the First Edition	xvii
1	Eve	nts and Probability	1
	1.1	Application: Verifying Polynomial Identities	1
	1.2	Axioms of Probability	3
	1.3	Application: Verifying Matrix Multiplication	8
	1.4	Application: Naïve Bayesian Classifier	12
	1.5	Application: A Randomized Min-Cut Algorithm	15
	1.6	Exercises	17
2	Disc	erete Random Variables and Expectation	23
	2.1	Random Variables and Expectation	23
		2.1.1 Linearity of Expectations	25
		2.1.2 Jensen's Inequality	26
	2.2	The Bernoulli and Binomial Random Variables	27
	2.3	Conditional Expectation	29
	2.4	The Geometric Distribution	33
		2.4.1 Example: Coupon Collector's Problem	35
	2.5	Application: The Expected Run-Time of Quicksort	37
	2.6	Exercises	40
3	Mor	ments and Deviations	47
	3.1	Markov's Inequality	47
	3.2	Variance and Moments of a Random Variable	48
		3.2.1 Example: Variance of a Binomial Random Variable	51

	3.3	Chebyshev's Inequality	51
		3.3.1 Example: Coupon Collector's Problem	53
	3.4	Median and Mean	55
	3.5	Application: A Randomized Algorithm for Computing the Median	57
		3.5.1 The Algorithm	58
		3.5.2 Analysis of the Algorithm	59
	3.6	Exercises	62
4	Cher	rnoff and Hoeffding Bounds	66
	4.1	Moment Generating Functions	66
	4.2	Deriving and Applying Chernoff Bounds	68
		4.2.1 Chernoff Bounds for the Sum of Poisson Trials	68
		4.2.2 Example: Coin Flips	72
		4.2.3 Application: Estimating a Parameter	72
	4.3	Better Bounds for Some Special Cases	73
	4.4	Application: Set Balancing	76
	4.5	The Hoeffding Bound	77
	4.6*	Application: Packet Routing in Sparse Networks	79
		4.6.1 Permutation Routing on the Hypercube	80
		4.6.2 Permutation Routing on the Butterfly	85
	4.7	Exercises	90
5	Balls	, Bins, and Random Graphs	97
	5.1	Example: The Birthday Paradox	97
	5.2	Balls into Bins	99
		5.2.1 The Balls-and-Bins Model	99
		5.2.2 Application: Bucket Sort	101
	5.3	The Poisson Distribution	101
		5.3.1 Limit of the Binomial Distribution	105
	5.4	The Poisson Approximation	107
		5.4.1 * Example: Coupon Collector's Problem, Revisited	111
	5.5	Application: Hashing	113
		5.5.1 Chain Hashing	113
		5.5.2 Hashing: Bit Strings	114
		5.5.3 Bloom Filters	116
		5.5.4 Breaking Symmetry	118
	5.6	Random Graphs	119
		5.6.1 Random Graph Models	119
		5.6.2 Application: Hamiltonian Cycles in Random Graphs	121
	5.7	Exercises	127
	5.8	An Exploratory Assignment	133
6	The l	Probabilistic Method	135
	6.1	The Basic Counting Argument	135

	6.2	The Expectation Argument	137
		6.2.1 Application: Finding a Large Cut	138
		6.2.2 Application: Maximum Satisfiability	139
	6.3	Derandomization Using Conditional Expectations	140
	6.4	Sample and Modify	142
		6.4.1 Application: Independent Sets	142
		6.4.2 Application: Graphs with Large Girth	143
	6.5	The Second Moment Method	143
		6.5.1 Application: Threshold Behavior in Random Graphs	144
	6.6	The Conditional Expectation Inequality	145
	6.7	The Lovász Local Lemma	147
		6.7.1 Application: Edge-Disjoint Paths	150
		6.7.2 Application: Satisfiability	151
	6.8*	Explicit Constructions Using the Local Lemma	152
		6.8.1 Application: A Satisfiability Algorithm	152
	6.9	Lovász Local Lemma: The General Case	155
	6.10*	The Algorithmic Lovász Local Lemma	158
	6.11	Exercises	162
7	Marl	ov Chains and Random Walks	168
	7.1	Markov Chains: Definitions and Representations	168
		7.1.1 Application: A Randomized Algorithm for 2-Satisfiability	171
		7.1.2 Application: A Randomized Algorithm for 3-Satisfiability	174
	7.2	Classification of States	178
		7.2.1 Example: The Gambler's Ruin	181
	7.3	Stationary Distributions	182
		7.3.1 Example: A Simple Queue	188
	7.4	Random Walks on Undirected Graphs	189
		7.4.1 Application: An <i>s</i> – <i>t</i> Connectivity Algorithm	192
	7.5	Parrondo's Paradox	193
	7.6	Exercises	198
8	Conti	nuous Distributions and the Poisson Process	205
	8.1	Continuous Random Variables	205
	0.1	8.1.1 Probability Distributions in ℝ	205
		8.1.2 Joint Distributions and Conditional Probability	208
	8.2	The Uniform Distribution	210
	- Cant	8.2.1 Additional Properties of the Uniform Distribution	210
	8.3	The Exponential Distribution	213
	3.0	8.3.1 Additional Properties of the Exponential Distribution	213
		8.3.2* Example: Balls and Bins with Feedback	214
	8.4	The Poisson Process	218
	J1	8 4 1 Intergrival Distribution	210

		8.4.2 Combining and Splitting Poisson Processes	222
		8.4.3 Conditional Arrival Time Distribution	224
	8.5	Continuous Time Markov Processes	226
	8.6	Example: Markovian Queues	229
		8.6.1 $M/M/1$ Queue in Equilibrium	230
		8.6.2 $M/M/1/K$ Queue in Equilibrium	233
		8.6.3 The Number of Customers in an $M/M/\infty$ Queue	233
	8.7	Exercises	236
9	The l	Normal Distribution	242
	9.1	The Normal Distribution	242
		9.1.1 The Standard Normal Distribution	242
		9.1.2 The General Univariate Normal Distribution	243
		9.1.3 The Moment Generating Function	246
	9.2*	Limit of the Binomial Distribution	247
	9.3	The Central Limit Theorem	249
	9.4*	Multivariate Normal Distributions	252
		9.4.1 Properties of the Multivariate Normal Distribution	255
	9.5	Application: Generating Normally Distributed Random Values	256
	9.6	Maximum Likelihood Point Estimates	258
	9.7	Application: EM Algorithm For a Mixture of Gaussians	261
	9.8	Exercises	265
10	Entr	opy, Randomness, and Information	269
	10.1	The Entropy Function	269
	10.2	Entropy and Binomial Coefficients	272
	10.3	Entropy: A Measure of Randomness	274
	10.4	Compression	278
	10.5*	Coding: Shannon's Theorem	281
	10.6	Exercises	290
11	The 1	Monte Carlo Method	297
	11.1	The Monte Carlo Method	297
	11.2	Application: The DNF Counting Problem	300
		11.2.1 The Naïve Approach	300
		11.2.2 A Fully Polynomial Randomized Scheme for DNF Counting	302
	11.3	From Approximate Sampling to Approximate Counting	304
	11.4	The Markov Chain Monte Carlo Method	308
		11.4.1 The Metropolis Algorithm	310
	11.5	Exercises	312
	11.6	An Exploratory Assignment on Minimum Spanning Trees	315

12	Cou	pling of Markov Chains	317
	12.1	Variation Distance and Mixing Time	317
		Coupling	320
		12.2.1 Example: Shuffling Cards	321
		12.2.2 Example: Random Walks on the Hypercube	322
		12.2.3 Example: Independent Sets of Fixed Size	323
	12.3	Application: Variation Distance Is Nonincreasing	324
		Geometric Convergence	327
		Application: Approximately Sampling Proper	
		Colorings	328
	12.6	Path Coupling	332
		Exercises	336
13	Mar	tingales	341
	13.1	Martingales	341
		Stopping Times	343
	10.2	13.2.1 Example: A Ballot Theorem	345
	13.3	Wald's Equation	346
		Tail Inequalities for Martingales	349
		Applications of the Azuma–Hoeffding Inequality	351
		13.5.1 General Formalization	351
		13.5.2 Application: Pattern Matching	353
		13.5.3 Application: Balls and Bins	354
		13.5.4 Application: Chromatic Number	355
	13.6	Exercises	355
14	Sam	ple Complexity, VC Dimension, and Rademacher	
	Comp	plexity	361
	14.1	The Learning Setting	362
	14.2	VC Dimension	363
		14.2.1 Additional Examples of VC Dimension	365
		14.2.2 Growth Function	366
		14.2.3 VC dimension component bounds	368
		14.2.4 ϵ -nets and ϵ -samples	369
	14.3	The ϵ -net Theorem	370
	14.4	Application: PAC Learning	374
	14.5	The ϵ -sample Theorem	377
		14.5.1 Application: Agnostic Learning	379
		14.5.2 Application: Data Mining	380
	14.6	Rademacher Complexity	382
		14.6.1 Rademacher Complexity and Sample Error	385

		14.6.2 Estimating the Rademacher Complexity	387
		14.6.3 Application: Agnostic Learning of a Binary Classification	388
	14.7	Exercises	389
15	Pair	wise Independence and Universal Hash Functions	392
	15.1	Pairwise Independence	392
		15.1.1 Example: A Construction of Pairwise Independent Bits	393
		15.1.2 Application: Derandomizing an Algorithm for Large Cuts	394
		15.1.3 Example: Constructing Pairwise Independent Values Modulo	207
		a Prime	395
	15.2	Chebyshev's Inequality for Pairwise Independent Variables	396
	150	15.2.1 Application: Sampling Using Fewer Random Bits	397
	15.3	Universal Families of Hash Functions	399
		15.3.1 Example: A 2-Universal Family of Hash Functions	401
		15.3.2 Example: A Strongly 2-Universal Family of Hash Functions	402
	1- 4	15.3.3 Application: Perfect Hashing	404
	15.4	Application: Finding Heavy Hitters in Data Streams	407
	15.5	Exercises	411
16	Powe	er Laws and Related Distributions	415
	16.1	Power Law Distributions: Basic Definitions and Properties	416
	16.2	Power Laws in Language	418
		16.2.1 Zipf's Law and Other Examples	418
		16.2.2 Languages via Optimization	419
		16.2.3 Monkeys Typing Randomly	419
	16.3	Preferential Attachment	420
		16.3.1 A Formal Version	422
	16.4	Using the Power Law in Algorithm Analysis	425
	16.5	Other Related Distributions	427
		16.5.1 Lognormal Distributions	427
		16.5.2 Power Law with Exponential Cutoff	428
	16.6	Exercises	429
17	Bala	nced Allocations and Cuckoo Hashing	433
	17.1	The Power of Two Choices	433
		17.1.1 The Upper Bound	433
	17.2	Two Choices: The Lower Bound	438
	17.3	Applications of the Power of Two Choices	441
		17.3.1 Hashing	441
		17.3.2 Dynamic Resource Allocation	442
	17.4	Cuckoo Hashing	442
	17.5	Extending Cuckoo Hashing	452
		17.5.1 Cuckoo Hashing with Deletions	452

	17.5.2 Handling Failures	453
	17.5.3 More Choices and Bigger Bins	454
17.6	Exercises	450
Further R	Reading	463
Index		464

Note: Asterisks indicate advanced material for this chapter.