Table of contents

Chapter 1

General i	ntro	duction on flowering time regulation in Arabidopsis thaliana	ı and
quantitat	ive t	rait loci analysis	1
1.1	R	egulation of flowering time in Arabidopsis	2
1	1.1.1	Vernalization and autonomous pathway	2
1	1.1.2	Photoperiodic pathway	4
1	1.1.3	Thermosensory pathway	e
1	1.1.4	Age pathway	7
1	.1.5	Hormone pathway	g
1.2	Q	antitative trait loci analysis (QTL) and its application	
	on	natural variation studies	1
1	.2.1	QTL analysis	11
1	.2.2	Recombinant inbred line (RIL) as mapping population	1 1
1	.2.3	Fine mapping and confirmation of candidate genes underlying a QTL	12
Chapter 2	2		
-		nalysis of the Landsberg <i>erecta</i> and Wa-1 alleles of <i>FRIGID</i>	4 14
2.1	IN	TRODUCTION	15
2.2	RI	ESULTS	18
2	2.2.1	Analysis of published data suggest FRI-Ler functionality	18
2	2.2.2	FRI-Ler may encode a N-terminus truncated functional protein	19
2	2.2.3	Functionality of FRI-Ler is confirmed in transgenic plants	21
2.2.4		The FRI-Ler allele presents expression defects due to cis-regulation	23
2.2.5		Lack of effect of coding polymorphisms in FRI-Ler	25
2.2.6		Fitness effect of the different FRI alleles	26
2.	.2.7	A new non-functional FRI allele: FRI-Wa-1	28
2.	.2.8	Single amino acid mutation abolishes the function of FRI-Wa-1 allele	31
2.2.9		Analysis of other accessions with FRI-Wa-1 allele	34
2.3	DI	SCUSSION	35

	2.4	MA	TERIAL AND METHODS	
	2.4.1		Analysis of published datasets	38
	2.4.2 2.4.3 2.4.4		Sequencing of FRI alleles	39
			Cloning of FRI alleles	39
			Selection and phenotyping of transgenic plants	
	2.4	4.5	Expression analysis using quantitative real-time PCR	43
	2.4	4.6	Allele-specific expression analysis	43
	2.4	4.7	Microscopic imaging	44
	2.4	4.8	Western blot assay	44
Chap	oter 3			
			f VIP HOMOLOG2 (VIH2) as a novel flowering time gene	4.6
unde	rlying		owering time QTL	
	3.1		RODUCTION	
	3.2		SULTS	
		2.1	Confirmation of QTL3 in multiple populations	
	3.2	2.2	Characterization of the Ler x Eri NILs.	
	3.2	2.3	Identification of VIH2 as causal gene underlying QTL3	54
	3.2	2.4	Protein sequence and functional variation between	
			VIH2-Eri and VIH2-Ler alleles	57
3.2.5		2.5	VIH2-Ler NIL is more sensitive to jasmonate	59
	3.2	2.6	VIH2 allele variation and distribution among Arabidopsis accessions	61
	3.3	DIS	CUSSION	63
3.3.1		3.1	Identification of VIH2 as the causal gene of flowering time QTL3	63
3.3.2		3.2	Function of VIH2 and its product: inositol pyrophosphates in plants	64
3.3.3		3.3	The role of VIH2 in flowering time regulation.	65
	3.3	3.4	Natural variation of VIH2 among Arabidopsis accessions	66
	3.3	3.5	Pleotropic effect of inositol pyrophosphates in yeast and animals	68
	3.3	3.6	Outlook for pleiotropy of VIH2 in Arabidopsis	69
	3.4	Mat	erials and Methods	71
	3. ~		Plant materials and phenotyping of flowering time	
3.4.2		1.2	Genotyping at QTL3	71

3.	.4.3	Expression analysis using RNA-seq and quantitative real-time PCR	71
3.	.4.4	HPLC Analyses of Inositol Phosphates	72
3.	.4.5	Root Length Measurement	72
3.	.4.6	Analysis on VIH2 allele variation and distribution	72
3.	.4.7	Accession Numbers	73
REFERE	NCES		76
Curriculum vitae			87
Acknowledgements			
Erklärung	ğ		89