Contents

Editor biographies		xi
List	of contributors	xiv
1	Introduction to engineering nanostructured materials for energy and environmental applications R V Mangalaraja and R Udayabhaskar	1-1
Par	t I Energy	
2	Engineering 2D chalcogenides for energy and environmental remediation A Arulraj, N Thachnatharen, C Rajkumar and R V Mangalaraja	2-1
2.1	Introduction	2-1
2.2	Synthesis approaches for chalcogenides	2-3
2.3	Applications of chalcogenides	2-5
	2.3.1 Energy	2-5
	2.3.2 Environmental remedial applications	2-12
2.4	Summary	2-19
	Acknowledgement	2-20
	References	2-20
3	Two-dimensional nanolayers for wearable supercapacitors Neetu Talreja, Divya Chauhan and R V Mangalaraja	3-1
3.1	Introduction	3-1
3.2	2D nanolayers and their properties	3-3
3.3	2D nanolayer based electrodes for supercapacitor applications	3-4
	3.3.1 Graphene based electrode materials for supercapacitors	3-5
	3.3.2 Transition metal dichalcogenides (TMDs)	3-7
	3.3.3 MXene	3-8
	3.3.4 Other 2D nanolayers	3-10
3.4	Nanolayer based flexible wearable devices	3-10
3.5	Conclusion and future prospects	3-15
	Acknowledgment	3-15
	References	3-15

4	Micro-mesoporous carbon-based nanostructured materials for flexible supercapacitors Mohammad Ashfaq, Divya Chauhan and R V Mangalaraja	4-1
4.1	Introduction	4-1
4.2	Synthesis of micro- and mesoporous carbon-based materials	4-4
	4.2.1 Carbonization and activation process	4-4
	4.2.2 Sulfonation process	4-6
	4.2.3 Halogenation process	4-7
4.3	Graphene: a revolution in energy storage	4-7
	4.3.1 Graphene and graphene composites in supercapacitors	4-8
4.4	Y	4-9
	4.4.1 CNTs and CNFs	4-9
	4.4.2 Carbon aerogels/composites	4-10
4.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-12
4.6	Conclusion and future prospects	4-14
	Acknowledgment	4-14
	References	4-15
5	Platinum based alloy nanostructure electrocatalyst for oxygen	5-1
	reduction reaction in polymer electrolyte membrane fuel cells Moorthi Lokanathan, Bhalchandra Kakade and R V Mangalaraja	
5.1	Introduction	5-1
5.2	Polymer electrolyte membrane fuel cells (PEMFCs)	5-2
	5.2.1 The working principle of PEMFCs	5-2
	5.2.2 Challenges of PEMFCs	5-2
	5.2.3 ORR mechanisms on Pt and Pt based alloy surfaces	5-3
5.3	Electrochemical measurement and activity calculation	5-3
	5.3.1 Preparation of the catalyst ink and a modified working electrode	5-3
	5.3.2 Cyclic voltammetry (CV)	5-4
	5.3.3 Rotating disc electrode (RDE) study	5-5
	5.3.4 Rotating ring disc electrode (RRDE) study	5-6
	5.3.5 Durability or stability test	5-7
5.4	A platinum based nanostructure electrocatalyst for ORR	5-7
	5.4.1 Pt monometallic nanostructures	5-7
	5.4.2 Pt based binary alloy nanostructures	5-10
	5.4.3 Pt based ternary alloy nanostructures	5-14
5.5	Summary	5-18

	Acknowledgements References	5-18 5-19
6	Ultrathin, flexible hybrid transition metal oxide nanostructures for renewable energy storage devices B Gnana Sundara Raj, S Anandan and R V Mangalaraja	6-1
6.1	Introduction	6-1
6.2	Fundamentals of nanostructured materials (NMs) for energy saving devices	6-4
6.3	Materials with supercapacitor electrodes	6-6
	6.3.1 Supercapacitors based on hybrid transition metal oxides (HTMOs)	6-7
	6.3.2 Supercapacitors based on graphene-hybrid transition metal oxides (G-HTMOs)	6-12
6.4	Conclusions and future perspectives	6-17
	Acknowledgements	6-18
	References	6-18
7	Graphene based nanocomposites for energy conversion:	7-1
	the oxygen reduction, oxygen evolution, and hydrogen	
	evolution reactions	
	Periyasamy Gnanaprakasam, Periyasamy Sundaresan, Muthukumar Abinaya, R V Mangalaraja, Ruey Shin Juang and Baskaralingam Vaseeharan	
7.1	Introduction	7-1
7.2	Synthesis of graphene	7-2
	7.2.1 Top-down approaches	7-2
	7.2.2 Bottom-up approaches	7-5
7.3	Heteroatom doped graphene	7-7
	7.3.1 Synthesis of N-doped graphene	7-8
	7.3.2 Synthesis of B-doped graphene	7-10
	7.3.3 Synthesis of F-doped graphene	7-10
7.4	Energy conversion applications of graphene composites	7-12
	7.4.1 Oxygen reduction reaction	7-12
	7.4.2 Oxygen evolution reaction	7-14
	7.4.3 Hydrogen evolution reaction	7-16
7.5	Conclusion	7-18
	Acknowledgements	7-19
	References	7-19

8	Materials science of advanced carbon nanomaterials for	8-1
	photovoltaic and photothermal devices	
	Thangaraj Pandiyarajan, R V Mangalaraja Balasubramanian Karthikeyan and M A Gracia-Pinilla	
8.1	Introduction	8-1
8.2	Classifications of carbon allotropes	8-3
	8.2.1 Three-dimensional materials	8-3
	8.2.2 Two-dimensional materials	8-4
	8.2.3 One-dimensional materials	8-4
	8.2.4 Zero-dimensional materials	8-5
8.3	Graphene synthesis route	8-5
	8.3.1 Exfoliation	8-5
	8.3.2 Bottom-up approaches	8-13
8.4	Photovoltaic devices	8-18
	8.4.1 Fundamental processes and important parameters	8-18
	8.4.2 Types of solar cells	8-20
	8.4.3 Graphene based photovoltaic cells	8-21
8.5	Photothermal therapy	8-42
	8.5.1 Graphene based PTT	8-44
	8.5.2 Chemo/photothermal synergistic therapy	8-49
8.6	Concluding remarks and outlook	8-51
	References	8-52
Par	t II Environmental Remediation	
9	Metal doped iron (III) oxide nanomaterials for wastewater	9-1
	treatment	
	N Jayaprakash, E Sundaravadivel, S Rajalakshmi and R Suresh	
9.1	Introduction	9-1
9.2	The synthesis of metal doped Fe ₂ O ₃ nanostructures	9-4
9.3	Properties of metal doped Fe ₂ O ₃ nanostructures	9-6
9.4	Applications of doped Fe ₂ O ₃ in environmental remediation	9-7
	9.4.1 Adsorption	9-7
	9.4.2 Catalysis	9-9
	9.4.3 Disinfection	9-17
9.5	Summary	9-18
	References	9-18

10	Nanoferrites for green magnetic refrigeration T Prabhakaran, F Béron, A M G Carvalho, R V Mangalaraja and J C Denardin	10-1
10.1	Introduction	10-1
	10.1.1 Conventional refrigerators (CRs) and the need for solid-state refrigerants	10-3
	10.1.2 Magnetic refrigeration	10-4
	10.1.3 Estimation of the MCE by direct and indirect methods	10-7
	10.1.4 First-order and second-order phase transition materials	10-8
10.2	The performance of ferrites as magnetic refrigerants	10-10
	10.2.1 The MCE of ZnFe ₂ O ₄ nanoparticles	10-11
	10.2.2 Ferrite nanocomposites	10-13
	10.2.3 Comparison of the MCE with previous reports	10-17
10.3	Perspectives and summary	10-19
	Acknowledgements	10-19
	References	10-20
11	Degradation of antibiotic pollutants and green hydrogen production from wastewater through a	11-1
	photocatalytic reaction	
	Saeed Farhang Sahlevani, Héctor Valdés Morales and R V Mangalaraja	
11.1	Introduction	11-1
11.2	Fundamentals of photocatalytics	11-3
11.3	Photocatalytic degradation of antibiotic wastewater	11-4
	11.3.1 ZnO	11-5
	11.3.2 TiO ₂	11-6
	11.3.3 Hybrid nanomaterials	11-7
11.4	Conclusions and outlook	11-13
	References	11-13
12	Fluorescent nanoclusters used as a probe for sensing	12-1
	of toxic chemicals and biomolecules	
	Krishnamoorthy Shanmugaraj, R V Mangalaraja, Radhamanohar Aepuru, Cristian H Campos, Malaichamy Ilanchelian and Mohamad Hafiz Bin Mamat	
12.1	Introduction	12-1
12.2	Synthesis methods of nanoclusters	12-3

12.3	Applications of fluorescent metal nanoclusters	12-4
	12.3.1 Detection of cations and anions	12-5
	12.3.2 Detection of small molecules	12-10
	12.3.3 Pesticide detection	12-13
	12.3.4 Nucleic-acid detection	12-14
	12.3.5 Protein detection	12-16
12.4	Conclusions and trends	12-17
	Acknowledgements	12-18
	References	12-18