Inhaltsverzeichnis

	Kurzfassung	
	Abstract	III
1	Einleitung	1
1.1	Wissenschaftliche und technische Arbeitsziele	4
1.2	Organisation des Projekts	7
2	Simulation von LWR und fortschrittlicher Reaktoren der Generation III+	9
2.1	Simulation großer Wasserpools passiver Sicherheitssysteme	9
2.1.1	Erweiterung des 2-Fluidmodells um ein Gemischspiegelmodell	11
2.1.2	Impulsgleichung für vertikale Leitungen	13
2.1.3	Impulsgleichung für horizontale Leitungen im Bereich des Gemischspiegels	20
2.1.4	Verteilung der Massen- und Energieflüsse im Bereich des	
	Gemischspiegels	27
2.1.5	Weiterentwicklung des Gemischspiegelmodells	28
2.1.6	Anwenderunterstützung bei der Gittererzeugung	29
2.1.7	Anwendungsbeispiele	30
2.2	Simulation von Druckstößen in Rohrleitungssystemen	37
2.2.1	Nachrechnung von Druckstoßphänomenen ausgelöst durch Ventilschnellschluss	38
2.2.2	Nachrechnung von Druckstoßphänomenen ausgelöst durch Aufprall einer Wassersäule	48
2.2.3	Modellerweiterung zur Simulation kondensationsinduzierter Druckstöße	55
2.2.4	Kondensationsinduzierte Druckstöße in vertikalen Rohren (Wasserkanone)	56
2.2.5	Kondensationsinduzierte Druckstöße in horizontalen Rohren	60
2.2.6	Schlussfolgerungen	63

2.3	Thermohydraulik wassergekühlter Systeme	65
2.3.1	Simulation zweiphasiger Strömungsvorgänge im Reaktorkern	65
2.3.2	Modellierung des Massen- und Energieaustauschs zwischen den	
	Phasen	76
2.3.3	Verbesserte Modellierung der kritischen Ausströmung	76
2.3.4	Bewertung eines Mehrfeldermodells zur Simulation komplexer,	
	zweiphasiger Strömungsphänomene	77
2.4	Erweiterung des Bortransportmodells	79
2.5	Neues Arbeitsmedium überkritisches CO ₂	80
2.6	Weitere Verbesserungen der thermohydraulischen Modellierung	80
2.7	Neutronenkinetik und thermo-strukturelle Modellierung des	
	Reaktorkerns	91
2.7.1	Erweiterung des Wärmestrahlungsmodells	91
2.7.2	Modifiziertes Kriterium für das Eintreten von DNB	94
2.7.3	Berücksichtigung des Einflusses von Abstandshaltern auf den CHF	96
2.7.4	Punktkinetikmodell	98
2.7.5	Weitere Modellverbesserungen	98
2.8	Programmhandhabung und Benutzerfreundlichkeit	99
2.8.1	Verbesserungen im Gesamtprogramm	100
2.8.2	Verbesserungen der Programmeingabe	101
2.8.3	Verbesserung von GCSM	102
2.8.4	Verbesserte Benutzerwerkzeuge	103
3	Unsicherheits- und Sensitivitätsanalysen	105
3.1	Entwicklung einer Methodik zur Quantifizierung unsicherer	
	Modelleingangsparameter	105
3.1.1	Unsicherheits- und Sensitivitätsanalyse	105
3.1.2	OECD/NEA/CSNI Projekt SAPIUM	109
3.2	Unsicherheitsanalyse zum Experiment NACIE-UP – Fundamental	
	Test 1	122
3.2.1	Auswahl des Experiments und Qualifizierung des	
	Referenzdatensatzes	
3.2.2	Unsicherheits- und Sensitivitätsanalyse	126

3.2.3	Neue Erkenntnisse zum Experiment	146
3.2.4	Zusammenfassung und Ausblick	147
4	Qualitätssicherung und bilaterale Zusammenarbeit	149
4.1	Refactoring	149
4.1.1	Einführung neuer Programmierstandards	149
4.1.2	Restrukturierung	150
4.1.3	Refactoring der Subroutine MAGM0	151
4.1.4	Plug-in-basierte Kopplung aller AC² Module	152
4.2	Qualitätssicherung der Programmentwicklung	153
4.2.1	Freigabe neuer Programmversionen	154
4.2.2	Skriptbasierte Erzeugung der ATHLET-Installationsroutinen	155
4.2.3	Kontinuierliche Integration	156
4.2.4	Entwicklungsumgebung	171
4.2.5	Programmdokumentation	171
4.2.6	Neue Tools zur automatischen Erzeugung der	
	Programmdokumentation	172
4.3	Kooperation mit externen Programmanwendern	172
4.3.1	Zusammenarbeit in der Programmentwicklung	172
4.3.2	Neue Benutzerschnittstellen	173
4.3.3	Erfahrungsaustausch	174
4.3.4	Neue ATHLET User Area	175
5	Zusammenfassung und Ausblick	177
5.1	Weiterentwicklung der Modellierung wassergekühlter Reaktoren	177
5.2	Unsicherheits- und Sensitivitätsanalysen	180
5.3	Qualitätssicherung der Programmentwicklung und Kooperation mit	
	nationalen und internationalen Programmanwendern	181
5.4	Fazit und Ausblick	183
	Literaturverzeichnis	187
	Abbildungsverzeichnis	195

	Tabellenverzeichnis	201
A	Anhang: Machbarkeitsstudie zur Implementierung eines Mehrfeldermodells im Systemcode ATHLET	203
A.1	Einleitung	203
A.2	Aktueller Stand der Mehrfeldermodelle	205
A.3	Einsatz von Mehrfeldermodellen in System- und Subchannelcodes	211
A.4	Erster Entwurf eines 3-Felder-Modells für ATHLET	217
A.5	Schließungsgleichungen	227
A.6	Planung und Risiken der Implementierung	237
A.7	Validierungsmöglichkeiten für das 3-Feldermodell	245
A.8	Zusammenfassung	247
A.9	Literatur	249