Inhaltsverzeichnis

I. Einführung	11
1. Zur Problematik der Einbeziehung maschineller Anlagen in betriebswirt-	
schaftliche Theorien	11
2. Problemstellung und Gang der Untersuchung	14
II. Verschleißfaktorverbrauchsfunktionen	16
1. Eine verschleißorientierte Betrachtung von Potentialfaktoren und Instand-	
haltung	16
1.1 Die moderne Verschleißforschung (Tribologie) und ihre ökonomische	
Relevanz	18
Interesse an der Verschleißforschung	18
1.1.2 Das betriebswirtschaftliche Interesse an der Verschleißforschung.	20
1.2 Der Verschleißprozeß als Grundlage für eine differenzierte Betrachtung	21
von Potentialfaktoren	21
prozesses	21
1.2.2 Betriebswirtschaftlich relevante Systematisierung der Ver-	
schleißwirkungen	22
1.3 Die Dekomposition von Potentialfaktoren	24
1.3.1 Nutzungsabhängig verschleißende Potentialfaktorkomponenten	
(Verschleißfaktoren)	25
1.3.2 Nutzungsunabhängig verschleißende Potentialfaktorkomponen-	
ten und Obsoleszenzfaktoren	26
1.4 Die Instandhaltung als verschleißhemmende und regenerierende Aktivi-	
tät	26
2. Wechselwirkungen zwischen Potentialfaktorverschleiß und Instandhaltungs-	
aktivitäten	28

2.1 Substitution zwischen Wartung und Regeneration

2.3 Die Ertragsfunktion des Instandhaltungsprozesses

 9

29

34

39

	Minimalkostenkombination in der Instandhaltung und Verschleißfaktor-	12
	brauchsfunktionen	43
	Konstante Faktoreinsätze und konstante Preise	44
3.2	Der Einfluß des Verschleißfortschritts auf Faktoreinsätze	49
	s diskontierte Modell der Minimalkostenkombination in der Instandhal-	67
	g	57
	Unbegrenzter identischer Ersatz von Verschleißfaktoren	57
	Begrenzter identischer Ersatz von Verschleißfaktoren	62
4.3	Die Ableitung der Verbrauchsfunktion für die Instandhaltung aus dem	
	diskontierten Modell der Minimalkostenkombination	63
III. In	vestitionstheoretische Perspektiven	68
1. Kri	itische Betrachtungen über die Berücksichtigung des Verschleißes in der	
Inv	vestitionstheorie	68
1.1	Modelle zur Maximierung des Kapitalwertes	68
	2 Die Methode der "repair limits"	72
2. Ve	rschleißorientierte Kriterien zur Bestimmung des Ersatzzeitpunktes und	
de	r Nutzungsdauer	74
2.1	Regenerationskosten und Restnutzungswert als Bestimmungsgrund für	
	Ersatzzeitpunkt und Nutzungsdauer wenn kein technischer Fortschritt	
	zu beachten ist	75
	2.1.1 Regenerationskostenkriterien	76
	2.1.2 Restwertekriterium	80
	2.1.3 Die Ermittlung von Ersatzzeitpunkt und/oder Nutzungsdauer mit	
	den Regenerationskostenkriterien bzw. dem Restwertekriterium.	82
2.3	2 Verschleiß und technischer Fortschritt als Bestimmungsgründe für Er-	
	satzzeitpunkt und Nutzungsdauer	87
		0.
IV A	Auswirkungen einer verschleißorientierten Betrachtung der Kapazitätsnut-	
	ung auf Kostentheorie und Plankostenrechnung	89
	·	0,7
	ie Diskussion um die variablen Abschreibungen in Kostentheorie und	
	ostenrechnung	90
1.	1 Nutzungsbedingter Verschleiß als Abschreibungsgrund versus Regenera-	
	tion	90
1.	2 Produktgrenzkosten und Verschleiß	91
2. D	er Einfluß der verschleißorientierten Betrachtung des maschinellen Produk-	
	onsprozesses auf die Kostenplanung	95
2.	.1 Die Verrechnung von Verschleißkosten	95
	.2 Der maschinenspezifische Output als Bezugsgröße der Kostenplanung .	96
maso	ang: Verschleißfaktorverbrauchsfunktionen am Beispiel Werkzeug-	07
		11/

nhaltsverzeichnis

	Inhaltsverzeichnis								7		
A 1	A1 Aufbau, Aktionsparameter und maschinenspezifischer Output einer Dreh-										
	maschine								98		
A2	Auswahl relevanter Verschleißsysteme								100		
A3	Verschleißfaktor Schneidwerkzeuge (Drehmeißel) .								101		
A4	Verschleißfaktor Hauptspindellagerung								110		
	Verschleißfaktor Gleitführung								113		
A6	Aggregation der Verschleißfaktorverbrauchsfunktioner	1.			•				116		
Literaturverzeichnis									119		